8.圓x2+y2+2x-6y+1=0關(guān)于直線ax-by+3=0(a>0,b>0)對(duì)稱,則$\frac{1}{a}$$+\frac{3}$的最小值是( 。
A.2$\sqrt{3}$B.$\frac{20}{3}$C.4D.$\frac{16}{3}$

分析 求出圓的圓心代入直線方程,然后利用基本不等式求解最值即可.

解答 解:∵圓x2+y2+2x-6y+1=0?(x+1)2+(y-3)2=9,
圓x2+y2+2x-6y+1=0關(guān)于直線ax-by+3=0(a>0,b>0)對(duì)稱,
∴該直線經(jīng)過(guò)圓心(-1,3),
把圓心(-1,3)代入直線ax-by+3=0(a>0,b>0),得:-a-3b+3=0
∴a+3b=3,a>0,b>0
∴$\frac{1}{a}$+$\frac{3}$=$\frac{1}{3}$×($\frac{1}{a}$+$\frac{3}$)(a+3b)=$\frac{1}{3}$(10+$\frac{3b}{a}$+$\frac{3a}$)≥$\frac{16}{3}$,
當(dāng)且僅當(dāng)$\frac{3b}{a}$=$\frac{3a}$時(shí)取得最小值,
故選:D.

點(diǎn)評(píng) 本題考查代數(shù)和的最小值的求法,是中檔題,解題時(shí)要注意圓的性質(zhì)和均值定理的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知一空間幾何體的三視圖如圖所示,則該幾何體的外接球的體積為$\frac{64\sqrt{2}π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.復(fù)數(shù)z滿足1+i=$\frac{1-3i}{2z}$(其中i為虛數(shù)單位),則z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1}{{e}^{x}}$,g(x)=lnx,其中e為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)y=f(x)g(x)在x=1處的切線方程;
(2)若存在x1,x2(x1≠x2),使得g(x1)-g(x2)=λ[f(x2)-f(x1)]成立,其中λ為常數(shù),求證:λ>e;
(3)若對(duì)任意的x∈(0,1],不等式f(x)g(x)≤a(x-1)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若實(shí)數(shù)a滿足x+lgx=2,實(shí)數(shù)b滿足x+10x=2,函數(shù)f(x)=$\left\{\begin{array}{l}{2ln(x+2)-\frac{a+b}{2},x≤0}\\{{x}^{2}-2,x>0}\end{array}\right.$,則關(guān)于x的方程f(x)=x解的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知數(shù)列{nan}的前n項(xiàng)和為Sn,且an=2n,則使得Sn-nan+1+50<0的最小正整數(shù)n的值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知P是圓x2+y2=R2上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作曲線C的兩條互相垂直的切線,切點(diǎn)分別為M,N,MN的中點(diǎn)為E.若曲線C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),且R2=a2+b2,則點(diǎn)E的軌跡方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}+{b^2}}}}$.若曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>b>0)$,且R2=a2-b2,則點(diǎn)E的軌跡方程是(  )
A.$\frac{x^2}{a^2}-\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}+{b^2}}}}$B.$\frac{x^2}{a^2}-\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}-{b^2}}}}$
C.$\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}+{b^2}}}}$D.$\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{a^2}-{b^2}}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{{2}^{x-1},x>1}\end{array}\right.$,則f(f(-2))=( 。
A.3B.4C.8D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)集合A={x∈Z|-6≤x≤6},B={x|2<2x≤16},C={x|x>a}
(1)求A∩B; 
(2)若集合M=A∩B,求M的子集個(gè)數(shù)并寫出集合M的所有子集;   
(3)若B∩C=∅,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案