17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{{2}^{x-1},x>1}\end{array}\right.$,則f(f(-2))=( 。
A.3B.4C.8D.$\frac{1}{8}$

分析 由已知中函數(shù)f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{{2}^{x-1},x>1}\end{array}\right.$,將x=-2代入可得答案.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{{2}^{x-1},x>1}\end{array}\right.$,
∴f(-2)=3.
∴f(f(-2))=f(3)=4.
故選:B

點評 本題考查的知識點是分段函數(shù)的應(yīng)用,函數(shù)求值,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.復(fù)數(shù)z=$\frac{3-2{i}^{3}}{1+i}$的虛部為(  )
A.-$\frac{1}{2}$B.-1C.$\frac{5}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.圓x2+y2+2x-6y+1=0關(guān)于直線ax-by+3=0(a>0,b>0)對稱,則$\frac{1}{a}$$+\frac{3}$的最小值是( 。
A.2$\sqrt{3}$B.$\frac{20}{3}$C.4D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且$b=2\sqrt{3},\sqrt{3}sinC=({sinA+\sqrt{3}cosA})sinB$,則AC邊上的高的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合M={1,3,4},N={x|x2-4x+3=0},則M∩N=( 。
A.{3,4}B.{1,4}C.{1,3}D.{3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,三棱錐A-BCD中,AB⊥平面BCD,CD⊥BD.
(1)求證:CD⊥平面ABD;
(2)若AB=BD=CD=2,M為AD中點,求點A到平面MBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知n=${∫}_{0}^{2}$x3dx,則(x-$\frac{1}{\root{3}{x}}$)n的展開式中常數(shù)項為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.一緝私艇巡航至距領(lǐng)海邊界線l(一條南北方向的直線)3.8海里的A處,發(fā)現(xiàn)在其北偏東30°方向相距4海里的B處有一走私船正欲逃跑,緝私艇立即追擊,已知緝私艇的最大航速是走私船最大航速的3倍,假設(shè)緝私艇和走私船均按直線方向以最大航速航行.
(1)若走私船沿正東方向逃離,試確定緝私艇的追擊方向,使得用最短時間在領(lǐng)海內(nèi)攔截成功;(參考數(shù)據(jù):sin17°≈$\frac{\sqrt{3}}{6}$,$\sqrt{33}$≈5.7446)
(2)問:無論走私船沿何方向逃跑,緝私艇是否總能在領(lǐng)海內(nèi)成功攔截?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知不過坐標(biāo)原點的動直線l與拋物線y2=4x交于P,Q兩點,若以PQ為直徑的圓橫過坐標(biāo)原點O,則直線l在x軸上的截距為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案