【題目】設(shè)函數(shù),,.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),討論函數(shù)與圖像的交點(diǎn)個(gè)數(shù).
【答案】(1)詳見解析;(2)1個(gè).
【解析】試題分析: (Ⅰ)對函數(shù)求導(dǎo),根據(jù)導(dǎo)函數(shù)大于0和小于0,求其增減區(qū)間即可; (Ⅱ)構(gòu)造函數(shù),利用導(dǎo)數(shù)研究其圖象特征,即可求得函數(shù)的零點(diǎn)即所要求的函數(shù)圖象的交點(diǎn).
試題解析:(Ⅰ)函數(shù)的定義域?yàn)?/span>.
,
當(dāng)時(shí),,函數(shù)單調(diào)遞減;
當(dāng)時(shí),,函數(shù)單調(diào)遞增.
綜上,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.
(Ⅱ)令,,問題等價(jià)于求函數(shù)的零點(diǎn)個(gè)數(shù),
,
當(dāng)時(shí),,函數(shù)為減函數(shù),
注意到,,∴有唯一零點(diǎn) .
當(dāng)時(shí),或時(shí),;時(shí),,
∴ 函數(shù)在和單調(diào)遞減,在單調(diào)遞增,
注意到,,∴有唯一零點(diǎn).
綜上,函數(shù)有唯一零點(diǎn),即兩函數(shù)圖象總有一個(gè)交點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種水杯,每個(gè)水杯的原材料費(fèi)、加工費(fèi)分別為30元、m元(m為常數(shù),且2≤m≤3),設(shè)每個(gè)水杯的出廠價(jià)為x元(35≤x≤41),根據(jù)市場調(diào)查,水杯的日銷售量與ex(e為自然對數(shù)的底數(shù))成反比例,已知每個(gè)水杯的出廠價(jià)為40元時(shí),日銷售量為10個(gè).
(1)求該工廠的日利潤y(元)與每個(gè)水杯的出廠價(jià)x(元)的函數(shù)關(guān)系式;
(2)當(dāng)每個(gè)水杯的出廠價(jià)為多少元時(shí),該工廠的日利潤最大,并求日利潤的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5 kg,乙材料1 kg,用5個(gè)工時(shí);生產(chǎn)一件產(chǎn)品B需要甲材料0.5 kg,乙材料0.3 kg,用3個(gè)工時(shí),生產(chǎn)一件產(chǎn)品A的利潤為2 100元,生產(chǎn)一件產(chǎn)品B的利潤為900元.該企業(yè)現(xiàn)有甲材料150 kg,乙材料90 kg,則在不超過600個(gè)工時(shí)的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤之和的最大值為________________元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】參加市數(shù)學(xué)調(diào)研抽測的某校高三學(xué)生成績分析的莖葉圖和頻率分布直方圖均受到不同程度的破壞,但可見部分信息如下,據(jù)此解答如下問題:
(1)求參加數(shù)學(xué)抽測的人數(shù)n、抽測成績的中位數(shù)及分?jǐn)?shù)分別在[80,90),[90,100]內(nèi)的人數(shù);
(2)若從分?jǐn)?shù)在[80,100]內(nèi)的學(xué)生中任選兩人進(jìn)行調(diào)研談話,求恰好有一人分?jǐn)?shù)在[90,100]內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有兩個(gè)分類變量x與y,其一組觀測值如下面的2×2列聯(lián)表所示:
y1 | y2 | |
x1 | a | 20-a |
x2 | 15-a | 30+a |
其中a,15-a均為大于5的整數(shù),則a取何值時(shí),在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為x與y之間有關(guān)系?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,F1,F2分別是橢圓C:的左、右焦點(diǎn),A是橢圓C的頂點(diǎn),B是直線AF2與橢圓C的另一個(gè)交點(diǎn),∠F1AF2=60°.
(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sinxcosx+2 cos2x﹣
(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間;
(2)已知△ABC的三個(gè)內(nèi)角A,B,C的對邊分別為a,b,c,其中a=7,若銳角A滿足f( ﹣ )= ,且sinB+sinC= ,求bc的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率是,且過點(diǎn).直線與橢圓相交于兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)求的面積的最大值;
(Ⅲ)設(shè)直線, 分別與軸交于點(diǎn), .判斷, 大小關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),.
(Ⅰ)若,設(shè),試證明存在唯一零點(diǎn),并求的最大值;
(Ⅱ)若關(guān)于的不等式的解集中有且只有兩個(gè)整數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com