已知拋物線,直線交拋物線于兩點,且.
(1)求拋物線的方程;
(2)若點是拋物線上的動點,過點的拋物線的切線與直線交于點,問在軸上是否存在定點,使得?若存在,求出該定點,并求出的面積的最小值;若不存在,請說明理由.
(1).(2)存在定點(0,1),.
解析試題分析:(1)把代入,消去,整理得,
2分
過拋物線的焦點,
拋物線的方程為. 6分
(2)切線方程為,即,
8分
令,,
當(dāng)時,,即, 10分
,,
點是拋物線的焦點,,
,
, 13分
不妨設(shè),令,
,
在上遞減,在上遞增,
,
即當(dāng)時,. 15分
考點:本題考查了直線與拋物線的綜合運用
點評:解決拋物線中的定值及最值問題的基本思想是建立目標(biāo)函數(shù)和建立不等式(方程)關(guān)系,根據(jù)條件求解定值及最值,因此這里問題的難點就是如何建立目標(biāo)函數(shù)和不等式(或等量關(guān)系)。建立目標(biāo)函數(shù)的關(guān)鍵是選用一個合適變量,這個變量可以是直線的斜率、直線的截距、點的坐標(biāo)等,要根據(jù)實際情況靈活處理。
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)直線是曲線的一條切線,.
(Ⅰ)求切點坐標(biāo)及的值;
(Ⅱ)當(dāng)時,存在,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓與拋物線的焦點均在軸上,的中心及的頂點均為原點,從每條曲線上各取兩點,將其坐標(biāo)記錄于下表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在坐標(biāo)原點焦點在軸上的橢圓C,其長軸長等于4,離心率為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(0,1), 問是否存在直線與橢圓交于兩點,且?若存在,求出的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分別求適合下列條件圓錐曲線的標(biāo)準(zhǔn)方程:
(1)焦點為、且過點橢圓;
(2)與雙曲線有相同的漸近線,且過點的雙曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線,直線截拋物線C所得弦長為.
(1)求拋物線的方程;
(2)已知是拋物線上異于原點的兩個動點,記若試求當(dāng)取得最小值時的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左頂點,過右焦點且垂直于長軸的弦長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線與橢圓交于點,與軸交于點,過原點與平行的直線與橢圓交于點,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點、, 是一個動點, 且直線、的斜率之積為.
(1) 求動點的軌跡的方程;
(2) 設(shè), 過點的直線交于、兩點, 若對滿足條件的任意直線, 不等式恒成立, 求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com