已知拋物線,直線截拋物線C所得弦長為.
(1)求拋物線的方程;
(2)已知是拋物線上異于原點的兩個動點,記若試求當(dāng)取得最小值時的最大值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,點到兩點,的距離之和為,設(shè)點的軌跡為曲線.
(1)寫出的方程;
(2)設(shè)過點的斜率為()的直線與曲線交于不同的兩點,,點在軸上,且,求點縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線,直線交拋物線于兩點,且.
(1)求拋物線的方程;
(2)若點是拋物線上的動點,過點的拋物線的切線與直線交于點,問在軸上是否存在定點,使得?若存在,求出該定點,并求出的面積的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓過點,橢圓左右焦點分別為,上頂點為,為等邊三角形.定義橢圓C上的點的“伴隨點”為.
(1)求橢圓C的方程;
(2)求的最大值;
(3)直線l交橢圓C于A、B兩點,若點A、B的“伴隨點”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點O.橢圓C的右頂點為D,試探究ΔOAB的面積與ΔODE的面積的大小關(guān)系,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:其左、右焦點分別為F1、F2,點P是坐標(biāo)平面內(nèi)一點,且|OP|=(O為坐標(biāo)原點)。
(1)求橢圓C的方程;
(2)過點l交橢圓于A、B兩點,在y軸上是否存在定點M,使以AB為直徑的圓恒過這個點:若存在,求出M的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線及點,直線斜率為1且不過點,與拋物線交于點A,B,
(1) 求直線在軸上截距的取值范圍;
(2) 若AP,BP分別與拋物線交于另一點C、D,證明:AD,BC交于定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線的頂點為坐標(biāo)原點,焦點在軸上,準(zhǔn)線與圓相切.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知直線和拋物線交于點,命題P:“若直線過定點,則”,請判斷命題P的真假,并證明。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com