【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應號召,大力研發(fā)新產(chǎn)品.為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如下表所示:

已知.

(1)求出的值;

(2)已知變量, 具有線性相關關系,求產(chǎn)品銷量(件)關于試銷單價(元)的線性回歸方程;

(3)用表示用正確的線性回歸方程得到的與對應的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取2個,求抽取的2個銷售數(shù)據(jù)中至少有1個是“好數(shù)據(jù)”的概率.

【答案】I;(II;(III).

【解析】試題分析:(1)借助題設條件直接求解;(2)運用相關系數(shù)公式求解;(3)依據(jù)題設條件及新定義的概念和概率公式求解:

試題解析:

解:(Ⅰ) ,可求得

(Ⅱ),

所以所求的線性回歸方程為

(Ⅲ)當時, ;當時, ;當時, ;當時, ;當時, ;當時,

與銷售數(shù)據(jù)對比可知滿足1,2,…,6)的共有3個“好數(shù)據(jù)”: 、

從6個銷售數(shù)據(jù)中任意抽取2個的所有可能結(jié)果有種,

其中2個數(shù)據(jù)中至少有一個是“好數(shù)據(jù)”的結(jié)果有種,

于是從抽得2個數(shù)據(jù)中至少有一個銷售數(shù)據(jù)中的產(chǎn)品銷量不超過80的概率為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在正三棱柱中,,點D是BC的中點,點上,且

1)求證: 平面

2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在正四棱錐中, 分別是

的中點,動點在線段上運動時,下列結(jié)論中不恒成立的是(  )

A. 異面 B. ∥面

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設事件表示“關于的方程有實數(shù)根”.

(1)若、,求事件發(fā)生的概率;

(2)若,求事件發(fā)生的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=2,點E、F分別在邊AB、DC上,M為AD的中點,且 =0,則△MEF的面積的取值范圍為(

A.
B.[1,2]
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】黃種人群中各種血型的人所占的比例如下:

血型

A

B

AB

O

該血型的人所占比例(%)

28

29

8

35

已知同種血型的人可以輸血,O型血可以輸給任何一種血型的人,其他不同血型的人不能互相輸血,小明是B型血,若小明因病需要輸血,問:

(1)任找一個人,其血可以輸給小明的概率是多少?

(2)任找一個人,其血不能輸給小明的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某車間共有名工人,隨機抽取6名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).

(Ⅰ) 根據(jù)莖葉圖計算樣本均值;

(Ⅱ) 日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人,根據(jù)莖葉圖推斷該車間名工人中有幾名優(yōu)秀工人;

(Ⅲ) 從該車間名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù)).

(1)當時,討論函數(shù)的單調(diào)性;

(2)設可求導數(shù),且它的導函數(shù)仍可求導數(shù),則再次求導所得函數(shù)稱為原函數(shù)的二階函數(shù),記為,利用二階導函數(shù)可以判斷一個函數(shù)的凹凸性.一個二階可導的函數(shù)在區(qū)間上是凸函數(shù)的充要條件是這個函數(shù)在的二階導函數(shù)非負.

不是凸函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=sin2(π+x)﹣cos(2π﹣x)+a
(1)求f(x)的值域
(2)若f(x)在(0, )內(nèi)有零點,求a的范圍.

查看答案和解析>>

同步練習冊答案