【題目】為抑制房價(jià)過快上漲和過度炒作,各地政府響應(yīng)中央號(hào)召,因地制宜出臺(tái)了系列房價(jià)調(diào)控政策.某市為擬定出臺(tái)房產(chǎn)限購的年齡政策”.為了解人們對房產(chǎn)限購年齡政策的態(tài)度,對年齡在歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持房產(chǎn)限購的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:

年齡

支持的人數(shù)

15

5

15

28

17

1)由以上統(tǒng)計(jì)數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為以44歲為分界點(diǎn)的不同人群對房產(chǎn)限購年齡政策的支持度有差異;

44歲以下

44歲以上

總計(jì)

支持

不支持

總計(jì)

2)若以44歲為分界點(diǎn),從不支持房產(chǎn)限購的人中按分層抽樣的方法抽取8人參加政策聽證會(huì).現(xiàn)從這8人中隨機(jī)抽2人.

①抽到1人是44歲以下時(shí),求抽到的另一人是44歲以上的概率.

②記抽到44歲以上的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

參考數(shù)據(jù):

,其中

【答案】1)列聯(lián)表見解析,有的把握認(rèn)為以44歲為分界點(diǎn)的不同人群對延遲退休政策的支持度有差異;(2)①;②分布列見解析,

【解析】

1)根據(jù)所給數(shù)據(jù),填寫列聯(lián)表,并由計(jì)算得,結(jié)合臨界值表即可判斷.

2)①根據(jù)分層抽樣特征可得44以下和44以上分別抽取的人數(shù),結(jié)合條件概率公式即可得解;②根據(jù)題意,X的可能取值是0,1,2,分別求得各組的概率即可得分布列,進(jìn)而由數(shù)學(xué)期望公式求解.

1)由頻率分布直方圖可知,44歲以下抽取的總?cè)藬?shù)為人,

44歲以下支持房產(chǎn)限購的人數(shù)為人,可知44歲以下不支持房產(chǎn)限購的人數(shù)為人;

44歲以上抽取的總?cè)藬?shù)為人,而44歲以上支持房產(chǎn)限購的人數(shù)為,所以44歲以上不支持房產(chǎn)限購的人數(shù)為

由以上可得列聯(lián)表如下,

44歲以下

44歲以上

總計(jì)

支持

35

45

80

不支持

15

5

20

總計(jì)

50

50

100

計(jì)算觀測值

所以有的把握認(rèn)為以44歲為分界點(diǎn)的不同人群對延遲退休政策的支持度有差異;

2)分層抽樣中,易得到抽取44以下的人6人,44以上的人2人,

故①抽到1人是44歲以下的概率為

抽到1人是44歲以下且另一人是44歲以上的概率為

故所求概率為

②根據(jù)題意,X的可能取值是0,1,2;

計(jì)算

,

,

可得隨機(jī)變量X的分布列為

X

0

1

2

P

故數(shù)學(xué)期望為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù)的圖象,只需把函數(shù),的圖象上所有的點(diǎn)(

A.向左平移個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變)

B.向右平移個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變)

C.向左平移個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變)

D.向右平移個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中隨機(jī)抽取部分高一學(xué)生調(diào)查其上學(xué)路上所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中上學(xué)路上所需時(shí)間的范圍是,樣本數(shù)據(jù)分組為,,,

(Ⅰ)求直方圖中的值;

(Ⅱ)如果上學(xué)路上所需時(shí)間不少于1小時(shí)的學(xué)生可申請?jiān)趯W(xué)校住宿,若招生1200名,請估計(jì)新生中有多少名學(xué)生可以申請住宿;

(Ⅲ)從學(xué)校的高一學(xué)生中任選4名學(xué)生,這4名學(xué)生中上學(xué)路上所需時(shí)間少于40分鐘的人數(shù)記為,求的分布列和數(shù)學(xué)期望.(以直方圖中頻率作為概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面是邊長為的菱形,,.

(1)證明:平面;

(2)若,求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,為棱的中點(diǎn).

求證:(1)平面;

(2)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個(gè)說法,其中正確的是(

A.線段在平面內(nèi),則直線不在平面內(nèi);B.三條平行直線共面;

C.兩平面有一個(gè)公共點(diǎn),則一定有無數(shù)個(gè)公共點(diǎn);D.空間三點(diǎn)確定一個(gè)平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)試討論函數(shù)的導(dǎo)函數(shù)的零點(diǎn)個(gè)數(shù);

(2)若對任意的,關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】五一勞動(dòng)節(jié)放假,某商場進(jìn)行一次大型抽獎(jiǎng)活動(dòng).在一個(gè)抽獎(jiǎng)盒中放有紅、橙、黃、綠、藍(lán)、紫的小球各2個(gè),分別對應(yīng)1分、2分、3分、4分、5分、6分.從袋中任取3個(gè)小球,按3個(gè)小球中最大得分的8倍計(jì)分,計(jì)分在20分到35分之間即為中獎(jiǎng).每個(gè)小球被取出的可能性都相等,用表示取出的3個(gè)小球中最大得分,求:

(1)取出的3個(gè)小球顏色互不相同的概率;

(2)隨機(jī)變量的概率分布和數(shù)學(xué)期望;

(3)求某人抽獎(jiǎng)一次,中獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海水養(yǎng)殖場進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:

(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計(jì)A的概率;

(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):

箱產(chǎn)量<50 kg

箱產(chǎn)量≥50 kg

舊養(yǎng)殖法

新養(yǎng)殖法

(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

同步練習(xí)冊答案