19.在△ABC中,AB=2,AC=1,∠BAC=120°,若$\overrightarrow{BD}=2\overrightarrow{DC}$,則$\overrightarrow{AD}•\overrightarrow{BC}$的值為( 。
A.$-\frac{1}{3}$B.$-\frac{2}{3}$C.-1D.$-\frac{4}{3}$

分析 根據(jù)$\overrightarrow{BD}=2\overrightarrow{DC}$,得出$\overrightarrow{AD}$、$\overrightarrow{AB}$與$\overrightarrow{AC}$的關系,再利用$\overrightarrow{BC}$=$\overrightarrow{AC}$-$\overrightarrow{AB}$,計算$\overrightarrow{AD}•\overrightarrow{BC}$的值.

解答 解:△ABC中,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,
則$\overrightarrow{AD}$-$\overrightarrow{AB}$=2($\overrightarrow{AC}$-$\overrightarrow{AD}$),
即有$\overrightarrow{AD}$=$\frac{1}{3}$($\overrightarrow{AB}$+2$\overrightarrow{AC}$),
所以$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|•cos120°=2×1×(-$\frac{1}{2}$)=-1;
則有$\overrightarrow{AD}$•$\overrightarrow{BC}$=$\frac{1}{3}$($\overrightarrow{AB}$+2$\overrightarrow{AC}$)•($\overrightarrow{AC}$-$\overrightarrow{AB}$)
=$\frac{1}{3}$$\overrightarrow{AB}$•$\overrightarrow{AC}$-$\frac{1}{3}$${\overrightarrow{AB}}^{2}$+$\frac{2}{3}$${\overrightarrow{AC}}^{2}$-$\frac{2}{3}$$\overrightarrow{AC}$•$\overrightarrow{AB}$
=$\frac{1}{3}$×(-1)-$\frac{1}{3}$×22+$\frac{2}{3}$×12-$\frac{2}{3}$×(-1)
=-$\frac{1}{3}$.
故選:A.

點評 本題考查了平面向量數(shù)量積的定義和性質,以及向量的加減運算和數(shù)乘問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.若輸入的數(shù)字是“-3”,輸出的結果是( 。
A.-3B.13C.8D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=aln(x+1)-x,a∈R.
(1)若x>0,試探究函數(shù)f(x)的極值;
(2)若對任意的x∈[1,2],f(x)+x2≤0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知復數(shù)z滿足$\frac{1-2i}{z}=i$,則z的共軛復數(shù)的虛部為( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.下列命題中,真命題是( 。
A.?x∈R,2x>x2
B.a+b=0的充要條件是$\frac{a}=-1$
C.$?{x_0}∈R,{e^{x_0}}≤0$
D.若x,y∈R,且x+y>2,則x,y至少有一個大于1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知$f(x)=\left\{\begin{array}{l}1-{x^2},\;x≤1\\ mlnx,\;x>1\end{array}\right.$,若函數(shù)y=f(x)-x恰有三個零點,則f(m)=e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖所示的程序框圖運行的結果是( 。
A.$\frac{2014}{2015}$B.$\frac{2015}{2016}$C.$\frac{2014}{2013}$D.$\frac{2015}{2014}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<|φ|<π)在一個周期內(nèi)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求f(x)在[0,π]上的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)y=a+bsin x的最大值是$\frac{3}{2}$,最小值是$-\frac{1}{2}$,求函數(shù)y=asinbx的最值與周期.

查看答案和解析>>

同步練習冊答案