正三角形ABC的邊長為2
3
,將它沿高AD翻折,使點(diǎn)B與點(diǎn)C間的距離為
3
,則四面體ABCD的外接球的表面積為
 
考點(diǎn):球內(nèi)接多面體
專題:計(jì)算題,空間位置關(guān)系與距離
分析:三棱錐B-ACD的三條側(cè)棱BD⊥AD、DC⊥DA,底面是正三角形,它的外接球就是它擴(kuò)展為三棱柱的外接球,求出正三棱柱的底面中心連線的中點(diǎn)到頂點(diǎn)的距離,就是球的半徑,然后求球的表面積即可.
解答: 解:根據(jù)題意可知三棱錐B-ACD的三條側(cè)棱BD⊥AD、DC⊥DA,底面是正三角形,它的外接球就是它擴(kuò)展為三棱柱的外接球,求出三棱柱的底面中心連線的中點(diǎn)到頂點(diǎn)的距離,就是球的半徑,而且AD=
12-3
=3,
正三棱柱ABC-A1B1C1的中,底面邊長為
3
,
由題意可得:三棱柱上下底面中點(diǎn)連線的中點(diǎn),到三棱柱頂點(diǎn)的距離相等,說明中心就是外接球的球心,
∴正三棱柱ABC-A1B1C1的外接球的球心為O,外接球的半徑為r,
球心到底面的距離為
3
2
,
底面中心到底面三角形的頂點(diǎn)的距離為:
2
3
×
3
2
×
3
=1
∴球的半徑為r=
9
4
+1
=
13
2

四面體ABCD外接球表面積為:4π×
13
4
=13π.
故答案為:13π.
點(diǎn)評:本題考查空間想象能力,計(jì)算能力;三棱柱上下底面中點(diǎn)連線的中點(diǎn),到三棱柱頂點(diǎn)的距離相等,說明中心就是外接球的球心,是本題解題的關(guān)鍵,仔細(xì)觀察和分析題意,是解好數(shù)學(xué)題目的前提.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•4x+b•2x+c,其中ac<0,給出下列關(guān)于函數(shù)f(x)的零點(diǎn)的結(jié)論:①存在兩個(gè)同號的零點(diǎn).②存在兩個(gè)異號的零點(diǎn).③僅存在一個(gè)零點(diǎn),其中錯(cuò)誤結(jié)論的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,Tn表示前n項(xiàng)的積,若T7=1,則( 。
A、a2=1
B、a3=1
C、a4=1
D、a5=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的公比q≠1,a3=4,a4+a5=2a3,則{an}前5項(xiàng)和S5等于( 。
A、4B、11C、20D、31

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知凼數(shù)f(x)=log3(ax2-x+1),其中a∈R
(1)若f(x)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍
(2)當(dāng)a=1時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x-y+2=0與圓x2+y2=4的位置關(guān)系是
 
.(填相交、相切或相離)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某機(jī)械廠生產(chǎn)一種產(chǎn)品,產(chǎn)品被測試指標(biāo)大于或等于90為優(yōu)等次,大于或等于80小于90為良等次,小于80為差等次.生產(chǎn)一件優(yōu)等次產(chǎn)品盈利100元,生產(chǎn)一件良等次產(chǎn)品盈利60元,生產(chǎn)一件差等次產(chǎn)品虧損20元.現(xiàn)隨機(jī)抽出高級技工甲和中級技工乙生產(chǎn)的這種產(chǎn)品各100件進(jìn)行檢測,結(jié)果統(tǒng)計(jì)如表:
測試指標(biāo)[70,75)[75,80)[80,85)[85,90)[90,95)[95,100)
3720302515
51523272010
根據(jù)表中統(tǒng)計(jì)得到甲、乙兩人生產(chǎn)這種產(chǎn)品為優(yōu)、良、差等次的頻率,現(xiàn)分別作為他們每次生產(chǎn)一件這種產(chǎn)品的等次互不受影響.
(1)計(jì)算高級技工甲生產(chǎn)三件產(chǎn)品,至少有2件優(yōu)等品的概率;
(2)甲、乙各生產(chǎn)一件產(chǎn)品給工廠帶來的利潤之和記為X元(利潤=盈利-虧損).求隨機(jī)變量X的頻率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知c是雙曲線M:
x2
a2
-
y2
b2
=1(a>0,b>0)的半焦距,則
c
a+b
的最小值是( 。
A、
2
B、
2
2
C、
3
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某次測驗(yàn)中,有6位同學(xué)的平均成績?yōu)?5分.用xn表示編號為n(n=1,2,…,6)的同學(xué)所得成績,且前5位同學(xué)的成績?nèi)缦拢?br />
編號n12345
成績xn7076727072
(1)求第6位同學(xué)的成績x6,及這6位同學(xué)成績的標(biāo)準(zhǔn)差s;
(2)從這6位同學(xué)中,隨機(jī)地選3位,記成績落在(70,75)的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案