已知等比數(shù)列{an}的公比q≠1,a3=4,a4+a5=2a3,則{an}前5項(xiàng)和S5等于(  )
A、4B、11C、20D、31
考點(diǎn):等比數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:由已知數(shù)據(jù)和等比數(shù)列的通項(xiàng)公式可得a1和q,代入求和公式計(jì)算可得.
解答: 解:∵等比數(shù)列{an}的公比q≠1,a3=4,a4+a5=2a3
∴a3q+a3q2=2a3,∴q2+q-2=0,
解得q=-2,∴a1=
a3
q2
=1,
∴{an}前5項(xiàng)和S5=
a1(1-q5)
1-q
=11
故選:B
點(diǎn)評(píng):本題考查等比數(shù)列的求和公式,求出數(shù)列的首項(xiàng)和公比是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某賽季,甲、乙兩名籃球運(yùn)動(dòng)員都參加了11場(chǎng)比賽,他們每場(chǎng)得分的情況如圖所示的莖葉圖表示,則甲、乙兩名運(yùn)動(dòng)員得分的中位數(shù)分別為( 。
A、13、19
B、19、13
C、18、20
D、20、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2lg5•2lg2+eln3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-a)2+(y-b)2=1,設(shè)平面區(qū)域Ω:
x+y-7≤0
x-y+3≥0
y≥0
,若圓心C∈Ω,且圓C與x軸相切,則a2+b2的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A={x|1≤x≤3},B={x|y=ln(x-2)},則A∩B等于( 。
A、{x|2≤x<3}
B、{x|2<x≤3}
C、{x|1≤x<2}
D、{x|1≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=asin(πx+α)+bcos(πx+β)+7,α、β均為實(shí)數(shù),若f(2013)=6,求f(2014)之值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三角形ABC的邊長(zhǎng)為2
3
,將它沿高AD翻折,使點(diǎn)B與點(diǎn)C間的距離為
3
,則四面體ABCD的外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的奇函數(shù)f(x)滿足f(2+x)=f(-x),當(dāng)0≤x≤1時(shí),f(x)=x2,則f(2015)=( 。
A、-1
B、1
C、0
D、20152

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,cos2B+3cosB-1=0,且a2+c2=ac+b+2
(Ⅰ)求邊b的邊長(zhǎng);
(Ⅱ)求△ABC周長(zhǎng)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案