10.已知集合A={-1,0,1},B=(-∞,0),則A∩B={-1}.

分析 由A與B,求出兩集合的交集即可.

解答 解:∵A={-1,0,1},B=(-∞,0),
∴A∩B={-1},
故答案為:{-1}

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.定義在R上的函數(shù)f(x)滿足f(x+2)=f(x),且f(-x)=-f(x),當(dāng)x∈(0,1)時,f(x)=$\frac{2^x}{{{4^x}+1}}$,
(1)求f(x)在[-1,1]上的解析式;
(2)判斷f(x)在(0,1)上的單調(diào)性,并證明;
(3)當(dāng)k取何值時,方程f(x)=k在[-1,1]上有解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,在△ABC中,已知$\overrightarrow{AN}$=$\frac{1}{2}\overrightarrow{AC}$,P是BN上一點,若$\overrightarrow{AP}=m\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$,則實數(shù)m的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.我們國家正處于老齡化社會中,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數(shù)約有66萬,為了了解老人們的健康狀況,政府從老人中隨機抽取600人并委托醫(yī)療機構(gòu)免費為他們進行健康評估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個等級,并以80歲為界限分成兩個群體進行統(tǒng)計,樣本分布被制作成如圖表:

(Ⅰ)若采用分層抽樣的方法再從樣本中的不能自理的老人中抽取8人進一步了解他們的生活狀況,則兩個群體中各應(yīng)抽取多少人?
(Ⅱ)估算該市80歲及以上長者占全市戶籍人口的百分比;
(Ⅲ)據(jù)統(tǒng)計該市大約有五分之一的戶籍老人無固定收入,政府計劃為這部分老人每月發(fā)放生活補貼,標準如下:
①80歲及以上長者每人每月發(fā)放生活補貼200元;
②80歲以下老人每人每月發(fā)放生活補貼120元;
③不能自理的老人每人每月額外發(fā)放生活補貼100元.試估計政府執(zhí)行此計劃的年度預(yù)算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知點O(0,0),M(1,0),且圓C:(x-5)2+(y-4)2=r2(r>0)上至少存在一點P,使得|PO|=$\sqrt{2}$|PM|,則r的最小值是5-$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè){an}是等差數(shù)列,若a4+a5+a6=21,則S9=63.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,某街道居委會擬在EF地段的居民樓正南方向的空白地段AE上建一個活動中心,其中AE=30米.活動中心東西走向,與居民樓平行.從東向西看活動中心的截面圖的下部分是長方形ABCD,上部分是以DC為直徑的半圓.為了保證居民樓住戶的采光要求,活動中心在與半圓相切的太陽光線照射下落在居民樓上的影長GE不超過2.5米,其中該太陽光線與水平線的夾角θ滿足$tanθ=\frac{3}{4}$.
(1)若設(shè)計AB=18米,AD=6米,問能否保證上述采光要求?
(2)在保證上述采光要求的前提下,如何設(shè)計AB與AD的長度,可使得活動中心的截面面積最大?(注:計算中π取3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.隨著社會的發(fā)展,終身學(xué)習(xí)成為必要,工人知識要更新,學(xué)習(xí)培訓(xùn)必不可少,現(xiàn)某工廠有工人1000名,其中250名工人參加過短期培訓(xùn)(稱為A類工人),另外750名工人參加過長期培訓(xùn)(稱為B類工人),從該工廠的工人中共抽查了100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù))得到A類工人生產(chǎn)能力的莖葉圖(圖1),B類工人生產(chǎn)能力的頻率分布直方圖(圖2).

(Ⅰ)問A類、B類工人各抽查了多少工人,并求出直方圖中的x;
(Ⅱ)求A類工人生產(chǎn)能力的中位數(shù),并估計B類工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅲ) 若規(guī)定生產(chǎn)能力在[130,150]內(nèi)為能力優(yōu)秀,由以上統(tǒng)計數(shù)據(jù)在答題卡上完成下面的2×2列聯(lián)表,并判斷是否可以在犯錯誤概率不超過0.1%的前提下,認為生產(chǎn)能力與培訓(xùn)時間長短有關(guān).
能力與培訓(xùn)時間列聯(lián)表
短期培訓(xùn)長期培訓(xùn)合計
能力優(yōu)秀85462
能力不優(yōu)秀172138
合計2575100
參考數(shù)據(jù):
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C的方程是$\frac{x^2}{4}+\frac{y^2}{3}=1$,直線l:y=kx+m與橢圓C有且僅有一個公共點,若F1M⊥l,F(xiàn)2N⊥l,M,N分別為垂足.
(Ⅰ)證明:$|{{F_1}M}|+|{{F_2}N}|≥2\sqrt{3}$;
(Ⅱ)求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

同步練習(xí)冊答案