5.已知點(diǎn)O(0,0),M(1,0),且圓C:(x-5)2+(y-4)2=r2(r>0)上至少存在一點(diǎn)P,使得|PO|=$\sqrt{2}$|PM|,則r的最小值是5-$\sqrt{2}$.

分析 求出P的軌跡方程,利用兩圓外離,得出r的最小值.

解答 解:設(shè)P(x,y),
∵|PO|=$\sqrt{2}$|PM|,
∴x2+y2=2(x-1)2+2y2,即(x-2)2+y2=2,
圓心距=$\sqrt{(5-2)^{2}+(4-0)^{2}}$=r+$\sqrt{2}$,
∴r的最小值是5-$\sqrt{2}$.
故答案為:5-$\sqrt{2}$.

點(diǎn)評(píng) 本題考查軌跡方程,考查圓與圓的位置關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)$f(x)=\frac{2}{{{2^x}+1}}+m,x∈R,m$為常數(shù).
(1)若f(x)為奇函數(shù),求實(shí)數(shù)m的值;
(2)判斷f(x)在R上的單調(diào)性,并用單調(diào)性的定義予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知拋物線C:y2=4x,焦點(diǎn)為F,過(guò)點(diǎn)P(-1,0)作斜率為k(k>0)的直線l與拋物線C交于A,B兩點(diǎn),直線AF,BF分別交拋物線C于M,N兩點(diǎn),若$\frac{|AF|}{|FM|}$+$\frac{|BF|}{|FN|}$=18,則k=$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)f(x)=$\frac{1}{x}$-log2$\frac{1+ax}{1-x}$為奇函數(shù),則實(shí)數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)M(2,1),且離心率為$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A(0,-1),直線l與橢圓C交于P,Q兩點(diǎn),且|AP|=|AQ|,當(dāng)△OPQ(O為坐標(biāo)原點(diǎn))的面積S最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知集合A={-1,0,1},B=(-∞,0),則A∩B={-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.將矩形ABCD繞邊AB旋轉(zhuǎn)一周得到一個(gè)圓柱,AB=3,BC=2,圓柱上底面圓心為O,△EFG為下底面圓的一個(gè)內(nèi)接直角三角形,則三棱錐O-EFG體積的最大值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若α∈(0,π),且sin2α+2cos2α=2,則tanα=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.雙曲線C:x2-4y2=1的漸近線方程是y=±$\frac{1}{2}$x,雙曲線C的離心率是$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案