分析 將雙曲線的方程化為標準方程,求得a,b,c,即可得到所求漸近線方程和離心率.
解答 解:雙曲線C:x2-4y2=1,
即為$\frac{{x}^{2}}{1}$-$\frac{{y}^{2}}{\frac{1}{4}}$=1,
可得a=1,b=$\frac{1}{2}$,c=$\sqrt{{a}^{2}+^{2}}$=$\frac{\sqrt{5}}{2}$,
可得漸近線方程為y=±$\frac{1}{2}$x;
離心率e=$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$.
故答案為:y=±$\frac{1}{2}$x;$\frac{\sqrt{5}}{2}$.
點評 本題考查雙曲線的方程和性質(zhì),主要是漸近線方程和離心率的求法,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a2>b2 | B. | 2a>2b | C. | ${({\frac{1}{2}})^a}>{({\frac{1}{2}})^b}$ | D. | (a${\;}^{\frac{1}{2}}$>b${\;}^{\frac{1}{2}}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com