【題目】在三棱柱中,,,的中點.

(1)證明:;

(2),點在平面的射影在上,且與平面所成角的正弦值為,求三棱柱的高.

【答案】(1)詳見解析;(2)高為

【解析】

1)連結于點E,連結DE,,得

2)取的中點O,連結,因為點在面ABC上的攝影在AC上,且,所以ABC,則可建立如圖的空間直角坐標系,設,求出平面的法向量,由BC與平面所成角的正弦值為,即,可求得.

1)連結于點E,連結DE,則E的中點,

D的中點,所以,且,

所以;

2)取的中點O,連結,

因為點在面ABC上的攝影在AC上,且,

所以ABC,可建立如圖的空間直角坐標系,設

因為,

,

為面的法向量,

,取,則,

BC與平面所成角的正弦值為,即

,解得,

所以三棱柱的高是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,已知底面ABCD是邊長為1的正方形,側面PAD⊥平面ABCD,PAPD,PA與平面PBC所成角的正弦值為。

1)求側棱PA的長;

2)設EAB中點,若PA≥AB,求二面角BPCE的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線x=﹣2上有一動點Q,過點Q作直線l,垂直于y軸,動點P在l1上,且滿足(O為坐標原點),記點P的軌跡為C.

(1)求曲線C的方程;

(2)已知定點M(,0),N(,0),點A為曲線C上一點,直線AM交曲線C于另一點B,且點A在線段MB上,直線AN交曲線C于另一點D,求△MBD的內(nèi)切圓半徑r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某火鍋店為了解氣溫對營業(yè)額的影響,隨機記錄了該店1月份中5天的日營業(yè)額y(單位:千元)與該地當日最低氣溫x(單位:℃)的數(shù)據(jù),如下表:

x

2

5

8

9

11

y

12

10

8

8

7

1)求y關于x的回歸方程;

2)判定yx之間是正相關還是負相關;若該地1月份某天的最低氣溫為6℃,用所求回歸方程預測該店當日的營業(yè)額;

附:①.

②參考數(shù)據(jù)如下:

i

1

2

12

4

24

2

5

10

25

50

3

8

8

64

64

4

9

8

81

72

5

11

7

121

77

35

45

295

287

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)).以坐標原點為極點,以x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為.

1)求l的普通方程和C的直角坐標方程;

2)若lC相交于A,B兩點,且,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,已知曲線的極坐標方程為,過點的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點.

(1)寫出曲線的直角坐標方程和直線的普通方程;

(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓、拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上取兩個點,將其坐標記錄于下表中:


3

2

4




0

4


)求的標準方程;

)請問是否存在直線滿足條件:的焦點;交不同兩點且滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,判斷函數(shù)的單調(diào)性;

(2)當有兩個極值點時,求a的取值范圍,并證明的極大值大于2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:

①線性相關系數(shù)越大,兩個變量的線性相關性越強;反之,線性相關性越弱;

②用來刻畫回歸效果,越大,說明模型的擬合效果越好;

③根據(jù)列聯(lián)表中的數(shù)據(jù)計算得出的的值越大,兩類變量相關的可能性就越大;

④在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越好;

⑤從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這樣的抽樣是分層抽樣.

其中真命題的序號是_______

查看答案和解析>>

同步練習冊答案