【題目】已知函數(shù)

(1)當(dāng)時,判斷函數(shù)的單調(diào)性;

(2)當(dāng)有兩個極值點時,求a的取值范圍,并證明的極大值大于2.

【答案】(1)為(0,+∞)上的減函數(shù).(2)見解析

【解析】

1)求出函數(shù)的導(dǎo)數(shù),法1:結(jié)合二次函數(shù)的性質(zhì)判斷導(dǎo)函數(shù)的符號,求出函數(shù)的單調(diào)性即可;法2:令hx=-x2+3x-3ex-a,根據(jù)函數(shù)的單調(diào)性求出hx)的最大值,判斷即可;(2)令hx=-x2+3x-3ex-a,求出函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性得到hx=0有兩不等實數(shù)根x1,x2x1x2),求出a的范圍,求出fx)的極大值判斷即可.

(1)由題知

方法1:由于,,,

,所以,從而,

于是為(0,+∞)上的減函數(shù).

方法2:令,則,

當(dāng)時,為增函數(shù);當(dāng)時,,為減函數(shù).

.由于,所以

于是為(0,+∞)上的減函數(shù).

(2)令,則

當(dāng)時,,為增函數(shù);當(dāng)時,, 為減函數(shù).

當(dāng)x趨近于時, 趨近于

由于有兩個極值點,所以有兩不等實根,即有兩不等實數(shù)根).

則有解得.可知,

,則,

當(dāng) 時,,單調(diào)遞減;當(dāng) 時,,單調(diào)遞增;當(dāng) 時,單調(diào)遞減.

則函數(shù)時取極小值,時取極大值.

,

,即,

所以極大值.當(dāng)時,恒成立,

上的減函數(shù),所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓M:(ab>0)的離心率為,左右頂點分別為A,B,線段AB的長為4.P在橢圓M上且位于第一象限,過點A,B分別作l1⊥PA,l2⊥PB,直線l1,l2交于點C.

(1)若點C的橫坐標(biāo)為﹣1,求P點的坐標(biāo);

(2)直線l1與橢圓M的另一交點為Q,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中,,,的中點.

(1)證明:;

(2),點在平面的射影在上,且與平面所成角的正弦值為,求三棱柱的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是邊長為的正方形,的中點,以為折痕把折起,使點到達點的位置,且二面角為直二面角,連結(jié).

(1)記平面與平面相較于,在圖中作出,并說明畫法;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形所在平面與半圓弧所在平面垂直,上異于,的點

(1)證明:平面平面

(2)在線段上是否存在點,使得平面?說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,,的中點.

(1)求證:平面

(2)若點在線段上,且滿足,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位為了響應(yīng)疫情期間有序復(fù)工復(fù)產(chǎn)的號召,組織從疫區(qū)回來的甲、乙、丙、丁4名員工進行核酸檢測,現(xiàn)采用抽簽法決定檢測順序,在員工甲不是第一個檢測,員工乙不是最后一個檢測的條件下,員工丙第一個檢測的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新高考改革后,國家只統(tǒng)一考試數(shù)學(xué)和語文,英語學(xué)科改為參加等級考試,每年考兩次,分別放在每個學(xué)年的上、下學(xué)期,物理、化學(xué)、生物、地理、歷史、政治這六科則以該省的省會考成績?yōu)闇?zhǔn).考生從中選擇三科成績,參加大學(xué)相關(guān)院系的錄取.

1)若英語等級考試成績有一次為優(yōu),即可達到某211院校的錄取要求.假設(shè)某個學(xué)生參加每次等級考試事件是獨立的,且該生英語等級考試成績?yōu)閮?yōu)的概率都是,求該生在高二上學(xué)期的英語等級考試成績才為優(yōu)的概率;

2)據(jù)預(yù)測,要想報考該211院校的相關(guān)院系,省會考的成績至少在90分以上,才有可能被該校錄取.假設(shè)該生在省會考六科的成績,考到90分以上概率都是,設(shè)該生在省會考時考到90分以上的科目數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接年北京冬季奧運會,普及冬奧知識,某校開展了冰雪答題王冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學(xué)生中隨機抽取了名學(xué)生,將他們的比賽成績(滿分為分)分為組:,,,,,,得到如圖所示的頻率分布直方圖.

1)求的值;

2)記表示事件從參加冬奧知識競賽活動的學(xué)生中隨機抽取一名學(xué)生,該學(xué)生的比賽成績不低于,估計的概率;

3)在抽取的名學(xué)生中,規(guī)定:比賽成績不低于分為優(yōu)秀,比賽成績低于分為非優(yōu)秀.請將下面的列聯(lián)表補充完整,并判斷是否有的把握認(rèn)為比賽成績是否優(yōu)秀與性別有關(guān)

優(yōu)秀

非優(yōu)秀

合計

男生

女生

合計

參考公式及數(shù)據(jù):,

查看答案和解析>>

同步練習(xí)冊答案