【題目】如圖,四邊形是邊長為的正方形,的中點,以為折痕把折起,使點到達點的位置,且二面角為直二面角,連結(jié).

(1)記平面與平面相較于,在圖中作出,并說明畫法;

(2)求直線與平面所成角的正弦值.

【答案】(1)詳見解析(2)

【解析】

(1)只需延長交于點,連結(jié),即可滿足是平面與平面的交線;

(2)先作用,得到兩兩垂直,以點為坐標原點,建立空間直角坐標系,求出平面的法向量,和直線的方向向量,由向量的夾角公式結(jié)合線面角的范圍,即可求出結(jié)果.

解:(1)延長交于點,連接,則直線即為.

(2)過,則,所以是二面角的平面角的補角,因為二面角為直二面角,從而,即.

為坐標原點,分別以軸,軸,軸正方向建立空間直角坐標系,如圖,在中,,,所以,從而,所以,又,,則,,,

所以,,

設平面的法向量為,則

,,,

所以,

設直線與平面所成角為,則,

所以直線與平面所成角的正弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一個六邊形點陣,它的中心是1個點(第1層),第2層每邊有2個點, 3層每邊有3個點,,依此類推,若一個六邊形點陣共有217個點,那么它的層數(shù)為(

A.10B.9C.8D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某火鍋店為了解氣溫對營業(yè)額的影響,隨機記錄了該店1月份中5天的日營業(yè)額y(單位:千元)與該地當日最低氣溫x(單位:℃)的數(shù)據(jù),如下表:

x

2

5

8

9

11

y

12

10

8

8

7

1)求y關于x的回歸方程;

2)判定yx之間是正相關還是負相關;若該地1月份某天的最低氣溫為6℃,用所求回歸方程預測該店當日的營業(yè)額;

附:①;.

②參考數(shù)據(jù)如下:

i

1

2

12

4

24

2

5

10

25

50

3

8

8

64

64

4

9

8

81

72

5

11

7

121

77

35

45

295

287

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,已知曲線的極坐標方程為,過點的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點.

(1)寫出曲線的直角坐標方程和直線的普通方程;

(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓、拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上取兩個點,將其坐標記錄于下表中:


3

2

4




0

4


)求的標準方程;

)請問是否存在直線滿足條件:的焦點;交不同兩點且滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市對創(chuàng)“市級示范性學校”的甲、乙兩所學校進行復查驗收,對辦學的社會滿意度一項評價隨機訪問了20為市民,這20位市民對這兩所學校的評分(評分越高表明市民的評價越好)的數(shù)據(jù)如下:

甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;

乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.

檢查組將成績分成了四個等級:成績在區(qū)間的為等,在區(qū)間的為等,在區(qū)間的為等,在區(qū)間等.

(1)請用莖葉圖表示上面的數(shù)據(jù),并通過觀察莖葉圖,對兩所學校辦學的社會滿意度進行比較,寫出兩個統(tǒng)計結(jié)論;

(2)估計哪所學校的市民的評分等級為級或級的概率大,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,判斷函數(shù)的單調(diào)性;

(2)當有兩個極值點時,求a的取值范圍,并證明的極大值大于2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求直線的普通方程與曲線的直角坐標方程;

(2)若直線與曲線交于兩點,且設定點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln (x+1)-xa∈R.

(1)當a>0時,求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

同步練習冊答案