【題目】已知直線l: (t為參數(shù)),曲線C1 (θ為參數(shù)).
(Ⅰ)設l與C1相交于A,B兩點,求|AB|;
(Ⅱ)若把曲線C1上各點的橫坐標壓縮為原來的 倍,縱坐標壓縮為原來的 倍,得到曲線C2 , 設點P是曲線C2上的一個動點,求它到直線l的距離的最小值.

【答案】解:(I)l的普通方程為y= (x﹣1),C1的普通方程為x2+y2=1,
聯(lián)立方程組 ,解得交點坐標為A(1,0),B( ,﹣
所以|AB|= =1;
(II)曲線C2 (θ為參數(shù)).
設所求的點為P( cosθ, sinθ),
則P到直線l的距離d= = [ sin( )+2]
當sin( )=﹣1時,d取得最小值
【解析】(I)將直線l中的x與y代入到直線C1中,即可得到交點坐標,然后利用兩點間的距離公式即可求出|AB|.(II)將直線的參數(shù)方程化為普通方程,曲線C2任意點P的坐標,利用點到直線的距離公式P到直線的距離d,分子合并后利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個角的正弦函數(shù),與分母約分化簡后,根據(jù)正弦函數(shù)的值域可得正弦函數(shù)的最小值,進而得到距離d的最小值即可.
【考點精析】解答此題的關鍵在于理解直線的參數(shù)方程的相關知識,掌握經(jīng)過點,傾斜角為的直線的參數(shù)方程可表示為為參數(shù)),以及對圓的參數(shù)方程的理解,了解圓的參數(shù)方程可表示為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在單調(diào)遞增數(shù)列{an}中,a1=2,a2=4,且a2n1 , a2n , a2n+1成等差數(shù)列,a2n , a2n+1 , a2n+2成等比數(shù)列,n=1,2,3,….
(Ⅰ)(。┣笞C:數(shù)列 為等差數(shù)列;
(ⅱ)求數(shù)列{an}的通項公式.
(Ⅱ)設數(shù)列 的前n項和為Sn , 證明:Sn ,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學典籍《九章算術》“盈不足”中有一道問題:“今有垣高九尺,瓜生其上,蔓日長七寸;瓠生其下,蔓日長一尺,問幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出的結(jié)果n=(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩定點F1(﹣ ,0),F(xiàn)2 ,0),滿足條件|PF2|﹣|PF1|=2的點P的軌跡是曲線E.
(1)求曲線E的方程;
(2)設過點(0,﹣1)的直線與曲線E交于A,B兩點.如果|AB|=6 ,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=x3﹣3x+1,x∈[﹣2,2]的最大值為M,最小值為m,則M+m=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)= sinxcosx﹣sin2x,把f(x)的圖象向右平移 個單位,再向上平移2個單位,得到y(tǒng)=g(x)的圖象,若對任意實數(shù)x,都有g(α﹣x)=g(α+x)成立,則g(α+ )+g( )=(
A.4
B.3
C.2
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓E: ,點P(0,1)在短軸CD上,且
(Ⅰ) 求橢圓E的方程及離心率;
(Ⅱ) 設O為坐標原點,過點P的動直線與橢圓交于A,B兩點.是否存在常數(shù)λ,使得 為定值?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若四面體ABCD的三組對棱分別相等,即AB=CD,AC=BD,AD=BC,則(寫出所有正確結(jié)論編號) ①四面體ABCD每組對棱相互垂直
②四面體ABCD每個面的面積相等
③從四面體ABCD每個頂點出發(fā)的三條棱兩兩夾角之和大于90°而小于180°
④連接四面體ABCD每組對棱中點的線段互垂直平分
⑤從四面體ABCD每個頂點出發(fā)的三條棱的長可作為一個三角形的三邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于任意實數(shù)a,b,定義min{a,b}= ,定義在R上的偶函數(shù)f (x)滿足f (x+4)=f(x),且當0≤x≤2時,f (x)=min{2x﹣1,2﹣x},若方程f (x)﹣mx=0恰有兩個根,則m的取值范圍是(
A.{﹣1,1}∪(﹣ln2,- )∪( ,ln2)
B.[﹣1,- )∪
C.{﹣1,1}∪(﹣ln2,- )∪( ,ln2)
D.(- ,- )∪( ,

查看答案和解析>>

同步練習冊答案