【題目】在單調(diào)遞增數(shù)列{an}中,a1=2,a2=4,且a2n﹣1 , a2n , a2n+1成等差數(shù)列,a2n , a2n+1 , a2n+2成等比數(shù)列,n=1,2,3,….
(Ⅰ)(。┣笞C:數(shù)列 為等差數(shù)列;
(ⅱ)求數(shù)列{an}的通項(xiàng)公式.
(Ⅱ)設(shè)數(shù)列 的前n項(xiàng)和為Sn , 證明:Sn> ,n∈N* .
【答案】(Ⅰ)(。┳C明:因?yàn)閿?shù)列{an}為單調(diào)遞增數(shù)列,a1=2>0,所以an>0(n∈N*).
由題意得2a2n=a2n﹣1+a2n+1 , ,
于是 ,
化簡(jiǎn)得 ,
所以數(shù)列 為等差數(shù)列.
(ⅱ)解:因?yàn)閍3=2a2﹣a1=6, ,
所以數(shù)列 的首項(xiàng)為 ,公差為 ,
所以 ,從而 .
結(jié)合 ,可得a2n﹣1=n(n+1).
因此,當(dāng)n為偶數(shù)時(shí)an= ,當(dāng)n為奇數(shù)時(shí)an= .
2)證明:通過(ii)可知 = .
因?yàn)閍n= ,
所以 ,
∴ +…
= ,
所以Sn> ,n∈N*
【解析】(Ⅰ)(。┩ㄟ^題意可知2a2n=a2n﹣1+a2n+1、 ,化簡(jiǎn)即得結(jié)論;(ⅱ)通過計(jì)算可知數(shù)列 的首項(xiàng)及公差,進(jìn)而可得結(jié)論;(2)通過(ii)、放縮、裂項(xiàng)可知 >4( ﹣ ),進(jìn)而并項(xiàng)相加即得結(jié)論.
【考點(diǎn)精析】掌握等差關(guān)系的確定和數(shù)列的前n項(xiàng)和是解答本題的根本,需要知道如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),即-=d ,(n≥2,n∈N)那么這個(gè)數(shù)列就叫做等差數(shù)列;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 經(jīng)過點(diǎn) ,且離心率為 .
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A,B是橢圓C的左,右頂點(diǎn),P為橢圓上異于A,B的一點(diǎn),以原點(diǎn)O為端點(diǎn)分別作與直線AP和BP平行的射線,交橢圓C于M,N兩點(diǎn),求證:△OMN的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中的假命題是( )
A.?x∈R,2﹣x+1>1
B.?x∈[1,2],x2﹣1≥0
C.?x∈R,sinx+cosx=
D.?x∈R,x2+ ≤1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4x+a2x+3,a∈R
(1)當(dāng)a=﹣4時(shí),且x∈[0,2],求函數(shù)f(x)的值域;
(2)若f(x)>0在(0,+∞)對(duì)任意的實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:“x∈{x|﹣1≤x≤1},都有不等式x2﹣x﹣m<0成立”是真命題.
(1)求實(shí)數(shù)m的取值集合B;
(2)設(shè)不等式(x﹣3a)(x﹣a﹣2)<0的解集為A,若x∈A是x∈B的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程ln|x|﹣ax2+ =0有4個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】O為△ABC內(nèi)一點(diǎn),且2 , =t ,若B,O,D三點(diǎn)共線,則t的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l: (t為參數(shù)),曲線C1: (θ為參數(shù)).
(Ⅰ)設(shè)l與C1相交于A,B兩點(diǎn),求|AB|;
(Ⅱ)若把曲線C1上各點(diǎn)的橫坐標(biāo)壓縮為原來的 倍,縱坐標(biāo)壓縮為原來的 倍,得到曲線C2 , 設(shè)點(diǎn)P是曲線C2上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com