【題目】下列命題中的假命題是(
A.?x∈R,2x+1>1
B.?x∈[1,2],x2﹣1≥0
C.?x∈R,sinx+cosx=
D.?x∈R,x2+ ≤1

【答案】C
【解析】解:由于對x∈R,2x>0,故A為真命題;
由于y=x2﹣1在[1,2]上為增函數(shù),則ymin=1﹣1=0,故B為真命題;
由于sinx+cosx= sin(x+ )∈[﹣ , ],而 [﹣ ],故C為假命題;
由于x=0∈R時,x2+ =1,故D為真命題.
故選:C.
【考點精析】本題主要考查了命題的真假判斷與應用的相關知識點,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C的方程為(x﹣3)2+y2=1,圓M的方程為(x﹣3﹣3cosθ)2+(y﹣3sinθ)2=1(θ∈R),過M上任意一點P作圓C的兩條切線PA,PB,切點分別為A、B,則∠APB的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某加工廠用某原料由車間加工出A產品,由乙車間加工出B產品.甲車間加工一箱原料需耗費工時10小時可加工出7千克A產品,每千克A產品獲利40元.乙車間加工一箱原料需耗費工時6小時可加工出4千克B產品,每千克B產品獲利50元.甲、乙兩車間每天功能完成至多70多箱原料的加工,每天甲、乙車間耗費工時總和不得超過480小時,甲、乙兩車間每天獲利最大的生產計劃為(
A.甲車間加工原料10箱,乙車間加工原料60箱
B.甲車間加工原料15箱,乙車間加工原料55箱
C.甲車間加工原料18箱,乙車間加工原料50箱
D.甲車間加工原料40箱,乙車間加工原料30箱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)=x﹣ sin2x+asinx在(﹣∞,+∞)單調遞增,則a的取值范圍是( 。
A.[﹣1,1]
B.[﹣1, ]
C.[﹣ , ]
D.[﹣1,﹣ ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣ax﹣1(a∈R).
(1)若對任意實數(shù)x,f(x)<0恒成立,求實數(shù)a的取值范圍;
(2)當a>0時,解關于x的不等式f(x)<2x﹣3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}是公差不為0的等差數(shù)列,數(shù)列{bn}是等比數(shù)列,且b1=a1=1,b2=a3 , b3=a9
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{anbn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為R.當x<0時,f(x)=x3﹣1;當﹣1≤x≤1時,f(﹣x)=﹣f(x);當x> 時,f(x+ )=f(x﹣ ).則f(6)=( 。
A.﹣2
B.﹣1
C.0
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在單調遞增數(shù)列{an}中,a1=2,a2=4,且a2n1 , a2n , a2n+1成等差數(shù)列,a2n , a2n+1 , a2n+2成等比數(shù)列,n=1,2,3,….
(Ⅰ)(ⅰ)求證:數(shù)列 為等差數(shù)列;
(ⅱ)求數(shù)列{an}的通項公式.
(Ⅱ)設數(shù)列 的前n項和為Sn , 證明:Sn ,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學典籍《九章算術》“盈不足”中有一道問題:“今有垣高九尺,瓜生其上,蔓日長七寸;瓠生其下,蔓日長一尺,問幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出的結果n=(
A.4
B.5
C.6
D.7

查看答案和解析>>

同步練習冊答案