分析 連接AB,利用切割線定理先求出PC,進(jìn)而求出BC;在Rt△ABC中,利用勾股定理有BC2=AC2+AB2①;再利用弦切角定理,可知∠PAB=∠BAC,再加上一組公共角,可證△PAB∽△PCA,那么就有PC:AC=PA:AB②;兩式聯(lián)合可求AC.
解答 解:連接AB,根據(jù)切割線定理有,
PA2=PB•PC,
∴102=5×(5+BC),
解得BC=15,
又∵∠PAB=∠PCA,∠APB=∠CPA,
∴△APB∽△CPA,
∴PA:AB=PC:AC,
∴10:AB=20:AC①;
∵BC是直徑,
∴AB2+AC2=BC2,
∴AB2+AC2=152②;
①②聯(lián)立解得AC=$6\sqrt{5}$.
故答案為:$6\sqrt{5}$.
點(diǎn)評(píng) 本題利用了切割線定理、弦切角定理、相似三角形的判定和性質(zhì)、勾股定理等知識(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
日 期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
溫差x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.504 | B. | 0.994 | C. | 0.496 | D. | 0.06 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -$\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{12}$ | $\frac{7π}{12}$ | |||
Asin(ωx+φ) | 0 | 2 | -2 | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com