【題目】如圖,在四棱錐中,底面為平行四邊形,,.且底面.

(1)證明:平面平面 ;

(2)若的中點(diǎn),且,求二面角的大小

【答案】(1)見(jiàn)證明;(2)

【解析】

1)先根據(jù)計(jì)算得線線垂直,再根據(jù)線面垂直判定定理以及面面垂直判定定理得結(jié)論,(2)根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),根據(jù)方程組解得平面的法向量,利用向量數(shù)量積得向量夾角,最后根據(jù)二面角與向量夾角關(guān)系得結(jié)果.

(1)證明:∵,∴,

,∴.

又∵底面,∴.

,∴平面.

平面,∴平面平面.

(2)解:由(1)知,平面,

分別以,,軸,軸,軸建立空間直角坐標(biāo)系,如圖所示,

因?yàn)?/span>,令,

,,,

,.

,∴.

,.

設(shè)平面的法向量為

,得.

易知平面的一個(gè)法向量為,則,

∴二面角的大小為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三點(diǎn)、都在圓.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)若經(jīng)過(guò)點(diǎn)的直線被圓所截得的弦長(zhǎng)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.

)求數(shù)列的通項(xiàng)公式;

)令.求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某餐廳通過(guò)查閱了最近5次食品交易會(huì)參會(huì)人數(shù) (萬(wàn)人)與餐廳所用原材料數(shù)量 (袋),得到如下統(tǒng)計(jì)表:

第一次

第二次

第三次

第四次

第五次

參會(huì)人數(shù) (萬(wàn)人)

13

9

8

10

12

原材料 (袋)

32

23

18

24

28

(1)根據(jù)所給5組數(shù)據(jù),求出關(guān)于的線性回歸方程.

(2)已知購(gòu)買(mǎi)原材料的費(fèi)用 (元)與數(shù)量 (袋)的關(guān)系為,

投入使用的每袋原材料相應(yīng)的銷(xiāo)售收入為700元,多余的原材料只能無(wú)償返還,據(jù)悉本次交易大會(huì)大約有15萬(wàn)人參加,根據(jù)(1)中求出的線性回歸方程,預(yù)測(cè)餐廳應(yīng)購(gòu)買(mǎi)多少袋原材料,才能獲得最大利潤(rùn),最大利潤(rùn)是多少?(注:利潤(rùn)銷(xiāo)售收入原材料費(fèi)用).

參考公式: , .

參考數(shù)據(jù): , , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是橢圓的一個(gè)頂點(diǎn),且橢圓N的離心率為.

1)求橢圓N的方程;

2)已知是橢圓N的左焦點(diǎn),過(guò)作兩條互相垂直的直線交橢圓N兩點(diǎn),交橢圓N兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,,下頂點(diǎn)為,為坐標(biāo)原點(diǎn),點(diǎn)到直線的距離為為等腰直角三角形.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)直線與橢圓交于兩點(diǎn),若直線與直線的斜率之和為,證明:直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),函數(shù)上的最小值為,若不等式有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在棱長(zhǎng)為1的正方體中,點(diǎn)分別是棱的中點(diǎn),是側(cè)面內(nèi)一點(diǎn),若平面,則線段長(zhǎng)度的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為.

(1)若a=1,求Cl的交點(diǎn)坐標(biāo);

(2)若C上的點(diǎn)到l的距離的最大值為,求a.

查看答案和解析>>

同步練習(xí)冊(cè)答案