【題目】如圖,已知AB是⊙O的直徑,點(diǎn)D是⊙O上一點(diǎn),過點(diǎn)D作⊙O的切線,交AB的延長(zhǎng)線于點(diǎn)C,過點(diǎn)C作AC的垂線,交AD的延長(zhǎng)線于點(diǎn)E.

(1)求證:△CDE為等腰三角形;
(2)若AD=2, = ,求⊙O的面積.

【答案】
(1)證明:連接線段DB,

因?yàn)镈C為⊙O的切線,

所以∠DAB=∠BDC,

又因?yàn)锳B為⊙O的直徑,BD⊥AE,

所以∠CDE+∠CDB=∠DAB+∠AEC=90°,

所以∠CDE=∠AEC,

從而△CDE為等腰三角形.


(2)解:由(1)知CD=CE,

因?yàn)镈C為⊙O的切線,

所以CD2=CBCA,

所以CE2=CBCA,即 = =

又Rt△ABD∽R(shí)t△AEC,故 = =

因?yàn)锳D=2,所以BD=1,AB= ,S=π = ,

所以⊙O的面積為


【解析】(1)連接線段DB,利用垂直關(guān)系證明∠CDE=∠AEC,即可得出△CDE為等腰三角形;(2)利用相似三角形求出圓O的直徑,即可求出圓的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,直線過點(diǎn).

(1)若直線與圓相切,求直線的方程;

(2)若直線與圓交于兩點(diǎn),當(dāng)的面積最大時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)閧x|xR,且x≠0},對(duì)定義域內(nèi)的任意x1、x2,都有f(x1·x2)=f(x1)+f(x2),且當(dāng)x>1時(shí),f(x)>0.

(1)求證:f(x)是偶函數(shù);

(2)求證:f(x)在(0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)定義在區(qū)間[﹣m,m]上的函數(shù)f(x)=log2 是奇函數(shù),且f(﹣ )≠f( ),則nm的范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,直線交橢圓兩點(diǎn).

(1)求橢圓的焦點(diǎn)坐標(biāo)及長(zhǎng)軸長(zhǎng);

(2)求以線段為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市理論預(yù)測(cè)2010年到2014年人口總數(shù)與年份的關(guān)系如下表所示

年份2010+x(年)

0

1

2

3

4

人口數(shù)y(十萬(wàn))

5

7

8

11

19

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

(2) 據(jù)此估計(jì)2015年該城市人口總數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (其中α為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ.
(1)若A,B為曲線C1 , C2的公共點(diǎn),求直線AB的斜率;
(2)若A,B分別為曲線C1 , C2上的動(dòng)點(diǎn),當(dāng)|AB|取最大值時(shí),求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐中,垂直于正方形所在的平面,在這個(gè)四棱錐的所有表面及面、面中,一定互相垂直的平面有_________對(duì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代儒家要求學(xué)生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡(jiǎn)稱“六藝”,某中學(xué)為弘揚(yáng)“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂、射、御、書、數(shù)”六場(chǎng)傳統(tǒng)文化知識(shí)的競(jìng)賽,現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐、規(guī)定:每場(chǎng)知識(shí)競(jìng)賽前三名的得分都分別為,且);選手最后得分為各場(chǎng)得分之和,在六場(chǎng)比賽后,已知甲最后得分為26分,乙和丙最后得分都為11分,且乙在其中一場(chǎng)比賽中獲得第一名,則下列推理正確的是( )

A. 每場(chǎng)比賽第一名得分為4 B. 甲可能有一場(chǎng)比賽獲得第二名

C. 乙有四場(chǎng)比賽獲得第三名 D. 丙可能有一場(chǎng)比賽獲得第一名

查看答案和解析>>

同步練習(xí)冊(cè)答案