【題目】設(shè)拋物線的焦點為,準線為為拋物線過焦點的弦,已知以為直徑的圓與相切于點.

1)求的值及圓的方程;

2)設(shè)上任意一點,過點的切線,切點為,證明:.

【答案】12,;(2)證明見解析.

【解析】

1)由題意得的方程為,根據(jù)為拋物線過焦點的弦,以為直徑的圓與相切于點..利用拋物線和圓的對稱性,可得,圓心為,半徑為2.

2)設(shè),的方程為,代入的方程,得,根據(jù)直線與拋物線相切,令,得,代入,解得.代入的方程,得,得到點N的坐標為,然后求解.

1)解:由題意得的方程為

所以,解得.

又由拋物線和圓的對稱性可知,所求圓的圓心為,半徑為2.

所以圓的方程為.

2)證明:易知直線的斜率存在且不為0

設(shè),的方程為,代入的方程,

.

,得,

所以,解得.

代入的方程,得,即點N的坐標為

所以,

,

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為了解戶籍、性別對生育二胎選擇傾向的影響,某地從育齡人群中隨機抽取了容量為200的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)村戶籍各100人;男性120人,女性80人,繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖,如圖所示,其中陰影部分表示傾向選擇生育二胎的對應(yīng)比例,則下列敘述中錯誤的是( )

A. 是否傾向選擇生育二胎與戶籍有關(guān)

B. 是否傾向選擇生育二胎與性別有關(guān)

C. 傾向選擇生育二胎的人群中,男性人數(shù)與女性人數(shù)相同

D. 傾向選擇不生育二胎的人群中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)用表示中的最大值,設(shè)函數(shù),討論零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線上任意兩點處的切線交于點,稱阿基米德三角形”.當線段經(jīng)過拋物線焦點時,具有以下特征:①點必在拋物線的準線上;②為直角三角形,且;③.若經(jīng)過拋物線焦點的一條弦為,阿基米德三角形為,且點的縱坐標為4,則直線的方程為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)證明:當時,有最小值,無最大值;

2)若在區(qū)間上方程恰有一個實數(shù)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若,求的單調(diào)區(qū)間;

2)證明:(i

ii)對任意,恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4 — 4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為).

1)分別寫出直線的普通方程與曲線的直角坐標方程;

2)已知點,直線與曲線相交于兩點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】疫情期間,一同學通過網(wǎng)絡(luò)平臺聽網(wǎng)課,在家堅持學習.某天上午安排了四節(jié)網(wǎng)課,分別是數(shù)學,語文,政治,地理,下午安排了三節(jié),分別是英語,歷史,體育.現(xiàn)在,他準備在上午下午的課程中各任選一節(jié)進行打卡,則選中的兩節(jié)課中至少有一節(jié)文綜學科(政治、歷史、地理)課程的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為圓上一動點,軸,軸上的射影分別為點,動點滿足,記動點的軌跡為曲線.

(1)求曲線的方程;

(2)過點的直線與曲線交于,兩點,判斷以為直徑的圓是否過定點?求出定點的坐標;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案