【題目】拋物線上任意兩點處的切線交于點,稱為“阿基米德三角形”.當線段經過拋物線焦點時,具有以下特征:①點必在拋物線的準線上;②為直角三角形,且;③.若經過拋物線焦點的一條弦為,阿基米德三角形為,且點的縱坐標為4,則直線的方程為( )
A.B.
C.D.
科目:高中數學 來源: 題型:
【題目】已知點P(x,y)是平面內的動點,定點F(1,0),定直線l:x=﹣1與x軸交于點E,過點P作PQ⊥l于點Q,且滿足 .
(1)求動點P的軌跡t的方程;
(2)過點F作兩條互相垂直的直線,分別交曲線t于點A,B,和點C,D.設線段AB和線段CD的中點分別為M和N,記線段MN的中點為K,點O為坐標原點,求直線OK的斜率k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的圖象在處的切線方程為.
(1)討論函數的單調性.
(2)是否存在正實數,使得函數的定義域為時,值域也為?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓:,點,點是圓上任意一點,線段的垂直平分線交線段于點.
(1)求點的軌跡方程.
(2)設點,是的軌跡上異于頂點的任意兩點,以為直徑的圓過點.求證直線過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線的焦點為,準線為,為拋物線過焦點的弦,已知以為直徑的圓與相切于點.
(1)求的值及圓的方程;
(2)設為上任意一點,過點作的切線,切點為,證明:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x-m|-|2x+2m|(m>0).
(Ⅰ)當m=1時,求不等式f(x)≥1的解集;
(Ⅱ)若x∈R,t∈R,使得f(x)+|t-1|<|t+1|,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸,取相同長度單位建立極坐標系,直線的極坐標方程為.
(Ⅰ)求曲線和直線的直角坐標方程;
(Ⅱ)直線與軸交點為,經過點的直線與曲線交于,兩點,證明:為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com