10.已知$\vec a$,$\vec b$,$\vec c$在同一平面內(nèi),且$\vec a$=(1,2).
(1)若|$\vec c$|=2$\sqrt{5}$,且$\vec c$∥$\vec a$,求$\vec c$;
(2)若|$\vec b$|=$\frac{\sqrt{5}}{2}$,且($\vec a$+2$\vec b$)⊥(2$\vec a$-$\vec b$),求$\vec a$與$\vec b$的夾角.

分析 (1)根據(jù)平面向量的共線定理與模長公式,即可求出$\overrightarrow{c}$的坐標(biāo);
(2)由兩向量垂直數(shù)量積為0,列方程求出$\overrightarrow{a}$•$\overrightarrow$的值,再利用數(shù)量積的定義求出$\vec a$與$\vec b$的夾角大小.

解答 解。1)∵$\overrightarrow{c}$∥$\overrightarrow{a}$,設(shè)$\overrightarrow{c}$=λ$\overrightarrow{a}$,
則$\overrightarrow{c}$=(λ,2λ),
又|$\overrightarrow{c}$|=2$\sqrt{5}$,∴λ2+4λ2=20
解得λ=±2,
∴$\overrightarrow{c}$=(2,4)或(-2,-4);
(2)平面內(nèi)向量夾角的θ的取值范圍是θ∈[0,π].
∵($\overrightarrow{a}$+2$\overrightarrow$)⊥(2$\overrightarrow{a}$-$\overrightarrow$),
∴($\overrightarrow{a}$+2$\overrightarrow$)•(2$\overrightarrow{a}$-$\overrightarrow$)=0,
又∵|$\overrightarrow{a}$|=$\sqrt{5}$,|$\overrightarrow$|=$\frac{\sqrt{5}}{2}$,
∴2×${(\sqrt{5})}^{2}$+3$\overrightarrow{a}$•$\overrightarrow$-2${\overrightarrow}^{2}$=0,
解得$\overrightarrow{a}$•$\overrightarrow$=-$\frac{5}{2}$;
∴cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|×|\overrightarrow|}$=$\frac{-\frac{5}{2}}{\sqrt{5}×\frac{\sqrt{5}}{2}}$=-1,
∴$\vec a$與$\vec b$的夾角為θ=180°.

點(diǎn)評 本題考查了平面向量數(shù)量積的定義與應(yīng)用問題,也考查了向量共線定理的應(yīng)用問題,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ln x,F(xiàn)(x)=x-$\frac{a}{x}$+$\frac{lnx}{x}$-a,
(1)求函數(shù)f(x)在A(1,0)處的切線方程.
(2)若F(x)在[1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在等差數(shù)列{an}中,a2+a5=-22,a3+a6=-30.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an+bn}是首項(xiàng)為1,公比為2的等比數(shù)列,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.一個袋中有4個大小相同的小球,其中紅球1個,白球2個,黑球1個,現(xiàn)從袋中取出2球.
(Ⅰ)求取出2球都是白球的概率;
(Ⅱ)若取1個紅球記2分,取1個白球記1分,取1個黑球記0分,求取出兩球分?jǐn)?shù)之和為2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x2+ax+3
(1)當(dāng)x∈R時,f(x)≥2恒成立,求a的取值范圍;
(2)當(dāng)x∈R時,g(x)=f(2x).
①求g(x)的值域;
②若g(x)≤a有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)=2x+\frac{1}{x}$.
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷f(x)在[2,+∞)上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為   ρsin2θ=2cosθ,過點(diǎn)P(-2,-4)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2-\frac{\sqrt{2}}{2}t}\\{y=-4-\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),直線l與曲線C相交于A,B兩點(diǎn).
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ)求證:|PA|•|PB|=|AB|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.同時投擲兩個骰子,記向上的點(diǎn)數(shù)分別為a,b,設(shè)函數(shù)f(x)=(a-b)x2+bx+1.
(1)求f(x)為偶函數(shù)的概率;
(2)求f(x)在$[{-\frac{1}{2},+∞})$上單調(diào)遞增的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,一個正六角星薄片(其對稱軸與水面垂直)勻速地升出水面,直到全部露出水面為止,記時刻t薄片露出水面部分的圖形面積為S(t)(S(0)=0),則導(dǎo)函數(shù)y=S'(t)的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案