【題目】正四面體ABCD的體積為1O為其中心,正四面體EFGH與正四面體ABCD關(guān)于點(diǎn)O對(duì)稱(chēng),則這兩個(gè)正四面體的公共部分的體積為(

A.B.C.D.

【答案】B

【解析】

由題分析,是正四面體的外接球球心,可得的底面的高,到底面的距離為高的,因?yàn)閮蓚(gè)正四面體關(guān)于對(duì)稱(chēng),則兩個(gè)對(duì)稱(chēng)水平面之間的距離為底面高的,即頂點(diǎn)到水平面的距離為底面高的,進(jìn)而得到小正四面體的體積為正四面體的,對(duì)應(yīng)四個(gè)頂點(diǎn)由四個(gè)小正四面體,進(jìn)而求得公共部分的體積

若將正四面體放在一個(gè)水平面上,易知其中心到點(diǎn)的距離是到底面距離的,所以反射的對(duì)稱(chēng)面是距離為的底面距離的水平,因此,它割點(diǎn)所在的小正四面體時(shí)原正四面體的,同理,對(duì)三點(diǎn)處所切割的正四面體也是原正四面體的,則可得到兩個(gè)正四面體的公共部分體積為,

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是正方形, 平面, , , 分別為, , 的中點(diǎn).

1)求證: 平面;

2)求平面與平面所成銳二面角的大。

3)在線段上是否存在一點(diǎn),使直線與直線所成的角為?若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,則對(duì)任意非零實(shí)數(shù),方程 的解集不可能為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠有兩個(gè)車(chē)間生產(chǎn)同一種產(chǎn)品,第一車(chē)間有工人200人,第二車(chē)間有工人400人,為比較兩個(gè)車(chē)間工人的生產(chǎn)效率,采用分層抽樣的方法抽取工人,并對(duì)他們中每位工人生產(chǎn)完成一件產(chǎn)品的時(shí)間(單位:min)分別進(jìn)行統(tǒng)計(jì),得到下列統(tǒng)計(jì)圖表(按照[5565),[6575),[75,85),[85,95]分組).

分組

頻數(shù)

[55,65

2

[65,75

4

[75,85

10

[8595]

4

合計(jì)

20

第一車(chē)間樣本頻數(shù)分布表

(Ⅰ)分別估計(jì)兩個(gè)車(chē)間工人中,生產(chǎn)一件產(chǎn)品時(shí)間小于75min的人數(shù);

(Ⅱ)分別估計(jì)兩車(chē)間工人生產(chǎn)時(shí)間的平均值,并推測(cè)哪個(gè)車(chē)間工人的生產(chǎn)效率更高?(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)

(Ⅲ)從第一車(chē)間被統(tǒng)計(jì)的生產(chǎn)時(shí)間小于75min的工人中,隨機(jī)抽取3人,記抽取的生產(chǎn)時(shí)間小于65min的工人人數(shù)為隨機(jī)變量X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體ABCDA1B1C1D1 的棱長(zhǎng)為 2,且AC BD 交于點(diǎn)O,E 為棱DD1 中點(diǎn),以A 為原點(diǎn),建立空間直角坐標(biāo)系Axyz,如圖所示.

(Ⅰ)求證:B1O平面EAC;

(Ⅱ)若點(diǎn)F EA 上且B1FAE,試求點(diǎn)F 的坐標(biāo);

(Ⅲ)求二面角B1EAC 的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在三棱錐中,平面,,分別為線段上的點(diǎn),且

I)證明:平面;

II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的準(zhǔn)線為,其焦點(diǎn)為F,點(diǎn)B是拋物線C上橫坐標(biāo)為的一點(diǎn),若點(diǎn)B到的距離等于

(1)求拋物線C的方程,

(2)設(shè)A是拋物線C上異于頂點(diǎn)的一點(diǎn),直線AO交直線于點(diǎn)M,拋物線C在點(diǎn)A處的切線m交直線于點(diǎn)N,求證:以點(diǎn)N為圓心,以為半徑的圓經(jīng)過(guò)軸上的兩個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一片產(chǎn)量很大的水果種植園,在臨近成熟時(shí)隨機(jī)摘下某品種水果100個(gè),其質(zhì)量(均在l11kg)頻數(shù)分布表如下(單位: kg):

分組

頻數(shù)

10

15

45

20

10

以各組數(shù)據(jù)的中間值代表這組數(shù)據(jù)的平均值,將頻率視為概率.

1)由種植經(jīng)驗(yàn)認(rèn)為,種植園內(nèi)的水果質(zhì)量近似服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差.請(qǐng)估算該種植園內(nèi)水果質(zhì)量在內(nèi)的百分比;

2)現(xiàn)在從質(zhì)量為 的三組水果中用分層抽樣方法抽取14個(gè)水果,再?gòu)倪@14個(gè)水果中隨機(jī)抽取3個(gè).若水果質(zhì)量的水果每銷(xiāo)售一個(gè)所獲得的的利潤(rùn)分別為2元,4元,6元,記隨機(jī)抽取的3個(gè)水果總利潤(rùn)為元,求的分布列及數(shù)學(xué)期望.

附: ,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓,左、右焦點(diǎn)分別為,,右頂點(diǎn)為,上頂點(diǎn)為,為橢圓上在第一象限內(nèi)一點(diǎn).

1)若

①求橢圓的離心率;

②求直線的斜率.

2)若,,成等差數(shù)列,且,求直線的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案