分析 (Ⅰ)由f(1)=f(3)=-1求出b,c值,得到函數(shù)f(x)的解析式,進而可得函數(shù)g(x)的解析式,由函數(shù)g(x)有兩個零點x1,x2,且x1<4<x2,可得g(4)<0,解得實數(shù)a的取值范圍;
(Ⅱ)根據(jù)已知中“陡峭函數(shù)”的定義,結(jié)合二次函數(shù)的圖象和性質(zhì),分類討論,可得滿足條件的實數(shù)a的取值范圍.
解答 (本小題滿分12分)
解:(Ⅰ)由$\left\{\begin{array}{l}f(1)=-1\\ f(3)=-1\end{array}\right.⇒\left\{\begin{array}{l}1+2b+c=-1\\ 9+6b+c=-1\end{array}\right.⇒\left\{\begin{array}{l}b=-2\\ c=2\end{array}\right.$,
即f(x)=x2-4x+2,…(1分)
由題設(shè)可知g(x)=(x-a)2-4(x-a)+2-a2=x2-(2a+4)x+4a+2,…(2分)
因為g(x)有兩個零點x1,x2,且x1<4<x2,
∴g(4)=16-4(2a+4)+4a+2<0,$⇒a>\frac{1}{2}$,
又a>0,于是實數(shù)a的取值范圍為$({\frac{1}{2},+∞})$.…(5分)
(Ⅱ)由g(x)=x2-(2a+4)x+4a+2可知,其對稱軸為x=a+2,…(6分)
①當0<a≤2時,a+2≥2a,函數(shù)g(x)在區(qū)間[a,2a]上單調(diào)遞減,
最小值λ=g(2a)=-4a+2,最大值μ=g(a)=-a2+2,
則$\frac{μ-λ}{2a-a}>8⇒\frac{{4a-{a^2}}}{a}>8⇒\left\{\begin{array}{l}4-a>8\\ 0<a≤2\end{array}\right.$,顯然此時a不存在,…(8分)
②當2<a≤4時,a<a+2<2a,最小值λ=g(a+2)=-a2-2,
又$a+2≥\frac{3a}{2}$,最大值μ=g(a)=-a2+2,則$\frac{μ-λ}{2a-a}>8⇒\frac{4}{a}>8$,$⇒0<a<\frac{1}{2}$,又2<a≤4,此時a亦不存在,…(10分)
③當a>4時,a<a+2<2a,最小值λ=g(a+2)=-a2-2,
又$a+2<\frac{3a}{2}$,故最大值μ=g(2a)=-4a+2,
則$\frac{μ-λ}{2a-a}>8⇒\frac{{{a^2}-4a+4}}{a}>8⇒\left\{\begin{array}{l}{a^2}-12a+4>0\\ a>4\end{array}\right.$,$⇒\left\{\begin{array}{l}a<6-4\sqrt{2},或a>6+4\sqrt{2}\\ a>4\end{array}\right.$,即$a>6+4\sqrt{2}$,
綜上可知,實數(shù)a的取值范圍為$({6+4\sqrt{2},+∞})$.…(12分)
點評 本題考查的知識點是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{O{G}_{1}}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$ | B. | $\overrightarrow{O{G}_{1}}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$ | ||
C. | $\overrightarrow{O{G}_{1}}$=$\frac{3}{4}$$\overrightarrow{OA}$+$\frac{3}{4}$$\overrightarrow{OB}$+$\frac{3}{4}$$\overrightarrow{OC}$ | D. | $\overrightarrow{O{G}_{1}}$=$\frac{1}{9}$$\overrightarrow{OA}$+$\frac{1}{9}$$\overrightarrow{OB}$+$\frac{1}{9}$$\overrightarrow{OC}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,4) | B. | (2,3) | C. | (1,2) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{25}$ | B. | $\frac{4}{5}$ | C. | $\frac{9}{16}$ | D. | $\frac{9}{20}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com