某企業(yè)為節(jié)能減排,用9萬元購進(jìn)一臺(tái)新設(shè)備用于生產(chǎn).第一年需運(yùn)營費(fèi)用2萬元,從第二年起,每年運(yùn)營費(fèi)用均比上一年增加2萬元,該設(shè)備每年生產(chǎn)的收入均為11萬元. 設(shè)該設(shè)備使用了n(n∈N*)年后,年平均盈利額達(dá)到最大值(盈利額等于收入減去成本),則n等于( 。
A、6B、5C、4D、3
考點(diǎn):函數(shù)模型的選擇與應(yīng)用
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:根據(jù)題意建立等差數(shù)列模型,利用等差數(shù)列的性質(zhì)以及求和公式即可得到結(jié)論.
解答: 解:設(shè)該設(shè)備第n年的營運(yùn)費(fèi)為an,萬元,則數(shù)列{an}是以2為首項(xiàng),2為公差的等差數(shù)列,則an=2n,
則該設(shè)備使用了n年的營運(yùn)費(fèi)用總和為Tn=n2+n,
設(shè)第n年的盈利總額為Sn,則Sn=11n-(n2+n)-9=-n2+10n-9=-(n-5)2+16,
∴當(dāng)n=5時(shí),Sn取得最大值16,
故選:B.
點(diǎn)評(píng):本題主要考查與數(shù)列有關(guān)的應(yīng)用問題,根據(jù)條件利用等差數(shù)列的通項(xiàng)公式求出盈利總額的表達(dá)式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|{y=
x2-4
},B={y|y=x2-2x},求A∩B=( 。
A、[-1,+∞)
B、[2,+∞)
C、(-∞,-2]∪[2,+∞)
D、(-∞,-2]∪[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,已知平面PBC⊥平面ABC.
(1)若AB⊥BC,CP⊥PB,求證:CP⊥PA:
(2)若過點(diǎn)A作直線l上平面ABC,求證:l∥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在R上定義運(yùn)算?:x?y=x(1-y),若不等式(x-a)?(x+a)<1對(duì)任意的實(shí)數(shù)x成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
0
x2dx
=9.則(2x+
1
x
2a的常數(shù)項(xiàng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)設(shè)g(x)=(
1
2
f(x),求函數(shù)g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4830與3289的最大公約數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解方程:
C
2x
4
+
C
2x-1
4
=
C
5
6
-
C
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log
1
2
(16-4x)的值域是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案