集合A={x|{y=
x2-4
},B={y|y=x2-2x},求A∩B=( 。
A、[-1,+∞)
B、[2,+∞)
C、(-∞,-2]∪[2,+∞)
D、(-∞,-2]∪[-1,+∞)
考點(diǎn):交集及其運(yùn)算
專(zhuān)題:集合
分析:求出A中x的范圍確定出A,求出B中y的范圍確定出B,找出A與B的交集即可.
解答: 解:由A中y=
x2-4
,得到x2-4≥0,即(x+2)(x-2)≥0,
解得:x≤-2或x≥2,即A=(-∞,-2]∪[2,+∞),
由B中y=x2-2x=x2-2x+1-1=(x-1)2-1≥-1,即B=[-1,+∞),
則A∩B=[2,+∞),
故選:B.
點(diǎn)評(píng):此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為角A,B,C所對(duì)的邊,且滿足b=7asinB,則sinA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合M={x|x≥3},N={x|x<a},若M∩N≠∅,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P從O點(diǎn)出發(fā),按逆時(shí)針?lè)较蜓刂荛L(zhǎng)為l的圖形運(yùn)動(dòng)一周,O、P兩點(diǎn)間的距離y與點(diǎn)P所走路程x的函數(shù)關(guān)系如圖,那么點(diǎn)P所走的圖形是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|x2-5x+4<0},B={y|-1<y<3},則A∩(∁RB)=(  )
A、(1,4)
B、[3,4)
C、(1,3)
D、(1,2)∪(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
x=3cosφ
y=5sinφ
(φ是參數(shù))的離心率是(  )
A、
3
5
B、
16
25
C、
9
25
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知互不垂直的平面α,β,γ和互不相同的直線a,b,l,則下列命題正確的個(gè)數(shù)是( 。
b?α
c?α
b∩c=P
a⊥b
a⊥c
⇒a⊥α
a?β,b?β
m?α,n?α
m∥α
n∥b
m∩n=P
a∩b=Q
⇒α∥β
a?α
b∩α=A
A∉a
⇒a,b異面
a⊥c
b⊥c
a,b,c?α
⇒a∥b.
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理) 如圖,四棱錐S-ABCD中,底面ABCD為正方形,SA⊥平面ABCD,AB=3,SA=4
(1)求直線SC與平面SAB所成角;
(2)求△SAB繞棱SB旋轉(zhuǎn)一圈形成幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)為節(jié)能減排,用9萬(wàn)元購(gòu)進(jìn)一臺(tái)新設(shè)備用于生產(chǎn).第一年需運(yùn)營(yíng)費(fèi)用2萬(wàn)元,從第二年起,每年運(yùn)營(yíng)費(fèi)用均比上一年增加2萬(wàn)元,該設(shè)備每年生產(chǎn)的收入均為11萬(wàn)元. 設(shè)該設(shè)備使用了n(n∈N*)年后,年平均盈利額達(dá)到最大值(盈利額等于收入減去成本),則n等于(  )
A、6B、5C、4D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案