11.已知點F(2,0)是雙曲線3x2-my2=3m(m>0)的一個焦點,則此雙曲線的離心率為( 。
A.$\frac{1}{2}$B.$\sqrt{3}$C.2D.4

分析 將雙曲線的方程化為標準方程,求得a,b,c,解方程可得m=1,再由離心率公式計算即可得到所求值.

解答 解:雙曲線3x2-my2=3m(m>0)
即為$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{3}$=1,
可得a=$\sqrt{m}$,b=$\sqrt{3}$,
c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{m+3}$=2,
解得m=1,
則e=$\frac{c}{a}$=$\frac{2}{1}$=2.
故選:C.

點評 本題考查雙曲線的方程和性質(zhì):主要是基本量a,b,c和離心率的求法,考查運算能力,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.設函數(shù)y=f(x)的導函數(shù)為f′(x),若y=f(x)的圖象在點P(1,f(l))處的切線方程 為x-y+2=0,則f(1)+f′(1)=( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=|2x-2|+b的兩個零點分別為x1,x2(x1>x2),則下列結(jié)論正確的是( 。
A.1<x1<2,x1+x2<2B.1<x1<2,x1+x2<1C.x1>1,x1+x2<2D.x1>1,x1+x2<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.雙曲線上存在一點與其中心及一個焦點構(gòu)成等邊三角形,則此雙曲線的離心率為( 。
A.2B.$\sqrt{3}$+1C.$\sqrt{3}$D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{3}$,過左焦點任作直線l,交橢圓的上半部分于點M,當l的斜率為$\frac{{\sqrt{3}}}{3}$時,|FM|=$\frac{{4\sqrt{3}}}{3}$.
(1)求橢圓C的方程;
(2)橢圓C上兩點A,B關(guān)于直線l對稱,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.定義在區(qū)間D上的函數(shù)f(x)和g(x),如果對任意x∈D,都有|f(x)-g(x)|≤1成立,則稱f(x)在區(qū)間D上可被g(x)替代,D稱為“替代區(qū)間”.給出以下問題:
①f(x)=x2+1在區(qū)間(-∞,+∞)上可被g(x)=x2+$\frac{1}{2}$替代;
②如果f(x)=lnx在區(qū)間[1,e]可被g(x)=x-b替代,則-2≤b≤2;
③設f(x)=lg(ax2+x)(x∈D1),g(x)=sinx(x∈D2),則存在實數(shù)a(a≠0)及區(qū)間D1,D2,使得f(x)在區(qū)間D1∩D2上被g(x)替代.
其中真命題是( 。
A.①②③B.②③C.D.①②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.集合A={x|x>0},B={-2,-1,1,2},則(∁RA)∩B=( 。
A.(0,+∞)B.{-2,-1,1,2}C.{-2,-1}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知集合M={y|y=x2},用自然語言描述M應為( 。
A.函數(shù)y=x2的函數(shù)值組成的集合B.函數(shù)y=x2的自變量的值組成的集合
C.函數(shù)y=x2的圖象上的點組成的集合D.以上說法都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知圓C:x2+y2-2x+4y-4=0,直線l的斜率為1,與圓交于A、B兩點.
(1)若直線l經(jīng)過圓C的圓心,求出直線的方程;
(2)當直線l平行移動的時候,求△CAB面積的最大值以及此時直線l的方程;
(3)是否存在直線l,使以線段AB為直徑的圓過原點?若存在,求出直線l的方程,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案