【題目】已知圓C內(nèi)有一點P2,2),過點P作直線l交圓CAB兩點.

1)當(dāng)l經(jīng)過圓心C時,求直線l的方程;

2)當(dāng)直線l的傾斜角為45時,求弦AB的長.

【答案】(1)2x-y-2=0;(2

【解析】

1)由圓的方程可求出圓心,再根據(jù)直線過點P、C,由斜率公式求出直線的斜率,由點斜式即可寫出直線l的方程;

2)根據(jù)點斜式寫出直線l的方程,再根據(jù)弦長公式即可求出.

1)已知圓C的圓心為C1,0),因直線過點P、C,所以直線l的斜率為,直線l的方程為y=2(x-1),即 2x-y-2=0

2)當(dāng)直線l的傾斜角為45時,斜率為1,直線l的方程為y-2=x-2 , x-y=0.

所以圓心C到直線l的距離為

因為圓的半徑為3,所以,弦AB的長

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的特征三角形;如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是相似橢圓,并將三角形的相似比稱為橢圓的相似比,已知橢圓.

1)若橢圓,判斷相似?如果相似,求出的相似比;如果不相似,請說明理由;

2)寫出與橢圓相似且焦點在軸上,短半軸長為的橢圓的標(biāo)準(zhǔn)方程;若在橢圓上存在兩點、關(guān)于直線對稱,求實數(shù)的取值范圍;

3)如圖:直線與兩個相似橢圓分別交于點和點,試在橢圓和橢圓上分別作出點和點(非橢圓頂點),使組成以為相似比的兩個相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對比該?忌纳龑W(xué)情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:

則下列結(jié)論正確的是  

A. 與2015年相比,2018年一本達(dá)線人數(shù)減少

B. 與2015年相比,2018年二本達(dá)線人數(shù)增加了

C. 2015年與2018年藝體達(dá)線人數(shù)相同

D. 與2015年相比,2018年不上線的人數(shù)有所增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,圓.

(Ⅰ)是拋物線的焦點,是拋物線上的定點,,求拋物線的方程;

(Ⅱ)在(Ⅰ)的條件下,過點的直線與圓相切,設(shè)直線交拋物線兩點,則在軸上是否存在點使?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,,且,.

1)證明:平面平面;

2)若點的中點,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是各項均為正數(shù)的等差數(shù)列.

(1)若,且成等比數(shù)列,求數(shù)列的通項公式;

(2)在(1)的條件下,數(shù)列的前和為,設(shè),若對任意的,不等式恒成立,求突數(shù)的最小值:

(3)若數(shù)列中有兩項可以表示位某個整數(shù)的不同次冪,求證:數(shù)列中存在無窮多項構(gòu)成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=lnxx+1.

1)求曲線y=fx)在點(1f1))處的切線方程:

2)若非零實數(shù)a使得fxaxax2x∈[1,+)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,智能手機(jī)的更新?lián)Q代極其頻繁和快速,而青少年對新事物的追求更是強(qiáng)烈,為了調(diào)查大學(xué)生更換手機(jī)的時間,現(xiàn)對某大學(xué)中的大學(xué)生使用一部手機(jī)的年限進(jìn)行了問卷調(diào)查,并從參與調(diào)查的大學(xué)生中抽取了男生、女生各人進(jìn)行抽樣分析,制成如下的頻率分布直方圖.

1)根據(jù)頻率分布直方圖,估計男大學(xué)生使用手機(jī)年限的中位數(shù)和女大學(xué)生使用手機(jī)年限的眾數(shù);

2)根據(jù)頻率分布直方圖,求出男大學(xué)生和女大學(xué)生使用手機(jī)年限的平均值,并分析比較男大學(xué)生和女大學(xué)生哪個群體更換手機(jī)的頻率更高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我邊防局接到情報,在海礁所在直線的一側(cè)點處有走私團(tuán)伙在進(jìn)行交易活動,邊防局迅速派出快艇前去搜捕:如圖,已知快艇出發(fā)位置在的另一側(cè)碼頭處,公里,公里,

1)是否存在點,使快艇沿航線的路程相等;如存在,則建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求出點的軌跡方程,且畫出軌跡的大致圖形;如不存在,請說明理由;

2)問走私船在怎樣的區(qū)域上時,路線比路線的路程短,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案