【題目】(本題分)

已知定義在上的兩個函數(shù), 圖象有公共點,且在公共點處的切線相同.

)用表示

)求證:

【答案】詳見解析

【解析】試題分析:Ⅰ)設(shè)出兩曲線的公共點坐標,分別求出f(x)和g(x)的導函數(shù),把設(shè)出點的坐標代入兩導函數(shù)中得到兩關(guān)系式,聯(lián)立兩關(guān)系式即可解出公共點的橫坐標,把求出的橫坐標代入得到用a表示出b的式子;

Ⅱ)設(shè)F(x)=f(x)﹣g(x),求出F(x)的導函數(shù),根據(jù)導函數(shù)的正負得到F(x)的單調(diào)區(qū)間,由x大于0和函數(shù)的增減性得到F(x)的最小值為0,即f(x)﹣g(x)大于等于0,得證.

試題解析:

Ⅰ)設(shè)公共點處的切線相同.

, ,

由題意

(舍去),

即有

Ⅱ)證明:設(shè),

, ,

為減函數(shù),在為增函數(shù),

所以函數(shù)上有最小值, ,

故當時,有,

即當時,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點為圓的圓心, 是圓上的動點,點在圓的半徑上,且有點上的點,滿足, .

1)當點在圓上運動時,求點的軌跡方程;

2)若斜率為的直線與圓相切,直線與(1)中所求點的軌跡交于不同的兩點, 是坐標原點,且時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,半徑為2的圓內(nèi)有兩條圓弧,一質(zhì)點M自點A開始沿弧A-B-C-O-A-D-C做勻速運動,則其在水平方向(向右為正)的速度的圖像大致為( )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2016·武昌調(diào)研)如圖,在圓內(nèi)畫1條線段,將圓分成2部分;畫2條相交線段,將圓分割成4部分;畫3條線段,將圓最多分割成7部分;畫4條線段,將圓最多分割成11部分.則

(1)在圓內(nèi)畫5條線段,將圓最多分割成________部分;

(2)在圓內(nèi)畫n條線段,將圓最多分割成________部分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲乙丙三輛汽車在不同速度下的燃油效率情況,下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時的速度1小時,消耗10升汽油

D. 某城市機動車最高限速80千米/小時,相同條件下,在該市用丙車比乙車更省油.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)需要設(shè)計一個倉庫,它由上下兩部分組成,上部的形狀是正四棱錐PA1B1C1D1,下部的形狀是正四棱柱ABCDA1B1C1D1(如圖所示),并要求正四棱柱的高O1O是正四棱錐的高PO1的4倍.

(1)若AB=6 m,PO1=2 m,則倉庫的容積是多少?

(2)若正四棱錐的側(cè)棱長為6 m,則當PO1為多少時,倉庫的容積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點Ax軸正半軸上的任一點,且,點B在射線ON上運動.

(1)若點,當為直角三角形時,求的值;

(2)若點,求點A關(guān)于射線的對稱點P的坐標;

(3)若,C為線段AB的中點,若Q為點C關(guān)于射線ON的對稱點,求點的軌跡方程,并指出x、y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐PABCD中,PA⊥底面ABCD,底面ABCD為梯形,ADBCCDBC,AD2,ABBC3,PA4MAD的中點,NPC上一點,且PC3PN.

(1)求證:MN∥平面PAB;

(2)求點M到平面PAN的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點和短軸的兩個頂點構(gòu)成的四邊形是一個正方形,且其周長為.

Ⅰ)求橢圓的方程;

Ⅱ)設(shè)過點的直線與橢圓相交于兩點,關(guān)于原點的對稱點為,若點總在以線段為直徑的圓內(nèi),的取值范圍.

查看答案和解析>>

同步練習冊答案