【題目】現(xiàn)需要設(shè)計一個倉庫,它由上下兩部分組成,上部的形狀是正四棱錐P—A1B1C1D1,下部的形狀是正四棱柱ABCD—A1B1C1D1(如圖所示),并要求正四棱柱的高O1O是正四棱錐的高PO1的4倍.
(1)若AB=6 m,PO1=2 m,則倉庫的容積是多少?
(2)若正四棱錐的側(cè)棱長為6 m,則當(dāng)PO1為多少時,倉庫的容積最大?
【答案】(1)312;(2)當(dāng)時,倉庫的容積最大
【解析】試題分析:(1)先根據(jù)錐體體積求正四棱錐體積,再根據(jù)柱體體積公式求正四棱柱體積,最后求和得倉庫的容積(2)先根據(jù)體積公式建立關(guān)于PO1三次函數(shù)關(guān)系式,再利用導(dǎo)數(shù)求函數(shù)最值
試題解析:(1)由PO1=2知O1O=4PO1=8.因為A1B1=AB=6,
所以正四棱錐P—A1B1C1D1的體積V錐=·A1B·PO1=×62×2=24(m3);
正四棱柱ABCD—A1B1C1D1的體積V柱=AB2·O1O=62×8=288(m3).
所以倉庫的容積V=V錐+V柱=24+288=312(m3).
(2)設(shè)A1B1=a m,PO1=h m,則0<h<6,O1O=4h.連接O1B1.
因為在Rt△PO1B1中,O1B+PO=PB,所以2+h2=36,即a2=2(36-h2).
于是倉庫的容積V=V柱+V錐=a2·4h+a2·h=a2h= (36h-h3),0<h<6,
從而V′= (36-3h2)=26(12-h2).
令V′=0,得h=2或h=-2 (舍),當(dāng)0<h<2時,V′>0,V是單調(diào)遞增函數(shù);
當(dāng)2<h<6時,V′<0,V是單調(diào)遞減函數(shù).故h=2時,V取得極大值,也是最大值.
因此,當(dāng)PO1=2 m時,倉庫的容積最大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的矩形中, ,點(diǎn)為邊上異于, 兩點(diǎn)的動點(diǎn),且, 為線段的中點(diǎn),現(xiàn)沿將四邊形折起,使得與的夾角為,連接, .
(1)探究:在線段上是否存在一點(diǎn),使得平面,若存在,說明點(diǎn)的位置,若不存在,請說明理由;
(2)求三棱錐的體積的最大值,并計算此時的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某直三棱柱被削去上底后的直觀圖與三視圖的側(cè)視圖、俯視圖,在直觀圖中,M是BD的中點(diǎn), ,側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.
(Ⅰ)求證:EM∥平面ABC;
(Ⅱ)求出該幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在定義域上是增函數(shù),求實數(shù)的取值范圍;
(Ⅱ)若,令,試討論函數(shù)的零點(diǎn)個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題分)
已知定義在上的兩個函數(shù), 圖象有公共點(diǎn),且在公共點(diǎn)處的切線相同.
(Ⅰ)用表示.
(Ⅱ)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,設(shè)傾斜角為的直線的參數(shù)方程為(為參數(shù))與曲線(為參數(shù))相交于不同的兩點(diǎn)、.
(1)若,求線段的中點(diǎn)的直角坐標(biāo);
(2)若直線的斜率為,且過已知點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知在極坐標(biāo)系和直角坐標(biāo)系中,極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的非負(fù)半軸重合,曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的直角坐標(biāo)方程和曲線的普通方程;
(2)判斷曲線與曲線的位置關(guān)系,若兩曲線相交,求出兩交點(diǎn)間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)國家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)的年平均濃度不得超過3S微克/立方米, 的24小時平均濃度不得超過75微克/立方米.某市環(huán)保局隨機(jī)抽取了一居民區(qū)2016年20天的24小時平均濃度(單位:微克/立方米)的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如圖表:
組別 | 濃度(微克/立方米) | 頻數(shù)(天) | 頻率 |
第一組 | 3 | 0.15 | |
第二組 | 12 | 0.6 | |
第三組 | 3 | 0.15 | |
第四組 | 2 | 0.1 |
(Ⅰ)將這20天的測量結(jié)果按表中分組方法繪制成的樣本頻率分布直方圖如圖.
(。┣髨D中的值;
(ⅱ)在頻率分布直方圖中估算樣本平均數(shù),并根據(jù)樣本估計總體的思想,從的年平均度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說明理由.
(Ⅱ)將頻率視為概率,對于2016年的某3天,記這3天中該居民區(qū)的24小時平均濃度符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)的天數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)我市“創(chuàng)建宜居港城,建設(shè)美麗莆田”,某環(huán)保部門開展以“關(guān)愛木蘭溪,保護(hù)母親河”為主題的環(huán)保宣傳活動,將木蘭溪流經(jīng)市區(qū)河段分成段,并組織青年干部職工對每一段的南、北兩岸進(jìn)行環(huán)保綜合測評,得到分值數(shù)據(jù)如下表:
南岸 | 77 | 92 | 84 | 86 | 74 | 76 | 81 | 71 | 85 | 87 |
北岸 | 72 | 87 | 78 | 83 | 83 | 85 | 75 | 89 | 90 | 95 |
(Ⅰ)記評分在以上(包括)為優(yōu)良,從中任取一段,求在同一段中兩岸環(huán)保評分均為優(yōu)良的概率;
(Ⅱ)根據(jù)表中數(shù)據(jù)完成下面莖葉圖;
(Ⅲ)分別估計兩岸分值的中位數(shù),并計算它們的平均值,試從計算結(jié)果分析兩岸環(huán)保情況,哪邊保護(hù)更好.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com