如圖甲,設(shè)正方形的邊長為,點(diǎn)分別在上,并且滿足
,如圖乙,將直角梯形沿折到的位置,使點(diǎn)
平面上的射影恰好在上.

(1)證明:平面;
(2)求平面與平面所成二面角的余弦值.

(1)先證(2)

解析試題分析:⑴證明:在圖甲中,易知,從而在圖乙中有,           
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ed/8/1hr0z4.png" style="vertical-align:middle;" />平面平面,所以平面
⑵解法1、
如圖,在圖乙中作,垂足為,連接,
由于平面,則,                      
所以平面,則,                      
所以平面與平面所成二面角的平面角,     
圖甲中有,又,則三點(diǎn)共線,     
設(shè)的中點(diǎn)為,則,易證,所以,,;
又由,得,            
于是,,                                
中,,即所求二面角的余弦值為


解法2、
如圖,在圖乙中作,垂足為,連接,由于平面,則,                                                
所以平面,則,圖甲中有,又,則三點(diǎn)共線,                                                     
設(shè)的中點(diǎn)為,則,易證,所以,則;
又由,得,               
于是,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面是正方形, ,分別為的中點(diǎn),且.

(1)求證: ;
(2)求異面直線所成的角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知正方體是底對角線的交點(diǎn).

求證:(Ⅰ)∥面;
(Ⅱ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形是正方形,為對角線的交點(diǎn),,的中點(diǎn);

(1)求證:;
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐的底面是正方形,,點(diǎn)在棱上.

(Ⅰ)  求證:平面平面;
(Ⅱ)  當(dāng),且時(shí),確定點(diǎn)的位置,即求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截面得,已知FA⊥平面ABC,AB=2,BD=1,AF=2, CE=3,O為AB的中點(diǎn).

(1)求證:OC⊥DF;
(2)求平面DEF與平面ABC相交所成銳二面角的大;
(3)求多面體ABC—FDE的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐P­ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD。
(1)證明:PABD;(2)設(shè)PDAD,求二面角APBC的余弦值.  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個(gè)多面體的直觀圖和三視圖如圖所示,其中,分別是,的中點(diǎn).
(1)求證:平面;
(2)在線段上(含端點(diǎn))確定一點(diǎn),使得∥平面,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.

(1)試建立適當(dāng)?shù)淖鴺?biāo)系,并寫出點(diǎn)P、B、D的坐標(biāo);
(2)問當(dāng)實(shí)數(shù)a在什么范圍時(shí),BC邊上能存在點(diǎn)Q,使得PQ⊥QD?
(3)當(dāng)BC邊上有且僅有一個(gè)點(diǎn)Q使得PQ⊥QD時(shí),求二面角Q-PD-A的大。

查看答案和解析>>

同步練習(xí)冊答案