【題目】已知過橢圓的四個頂點與坐標軸垂直的四條直線圍成的矩形是第一象限內(nèi)的點)的面積為,且過橢圓的右焦點的傾斜角為的直線過點

1)求橢圓的標準方程

2)若射線與橢圓的交點分別為.當它們的斜率之積為時,試問的面積是否為定值?若為定值,求出此定值;若不為定值,說明理由.

【答案】1;(2的面積為定值

【解析】

1)根據(jù)矩形面積、直線斜率和橢圓關系可構造方程組求得,進而得到橢圓標準方程;

2)當直線斜率存在時,設方程為,與橢圓方程聯(lián)立得到韋達定理的形式,利用弦長公式求得,點到直線公式求得點到直線距離,進而表示出;根據(jù),代入韋達定理形式化簡可得,代入中化簡得到;當直線斜率不存在時,可求得兩點坐標,進而求得;綜合兩種情況可知為定值.

1)由題意得:,.

直線的斜率,,

得:,橢圓的標準方程為.

2的面積為定值,理由如下:

,,

①當直線斜率存在時,設方程為.

得:,

,即

,

,

又點到直線的距離,

.

,,

化簡可得:,滿足,

;

②當直線斜率不存在時,

,可設,

則點的坐標分別為,

此時;

綜上所述:的面積為定值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知一動圓P與定圓外切,且與直線相切,記動點P的軌跡為曲線E

1)求曲線E的方程;

2)過點作直線l與曲線E交于不同的兩點B、C,設BC中點為Q,問:曲線E上是否存在一點A,使得恒成立?如果存在,求出點A的坐標;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求曲線在點處的切線方程;

2)若在定義域內(nèi)為單調(diào)函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙三名乒乓球手進行單打?qū)贡荣,每兩人比賽一場,共賽三場,每場比賽勝者?/span>3分,負者得0分,在每一場比賽中,甲勝乙的概率為,丙勝甲的概率為,乙勝丙的概率為,且各場比賽結果互不影響.若甲獲第一名且乙獲第三名的概率為.

1)求的值;

2)設在該次對抗比賽中,丙得分為,求的分布列、數(shù)學期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列{an}的前n項和為Sn,a1,公比q>0,S1+a1S3+a3,S2+a2成等差數(shù)列.

1)求{an};

2)設bn,求數(shù)列{cn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的上、下頂點分別為,且其離心率為.

1)求橢圓的標準方程;

2)點是直線上的一個動點,直線分別交橢圓兩點(四點互不重合),請判斷直線是否恒過定點.若過定點,求出定點的坐標;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且、.設關于的不等式的解集為,且方程的兩實根為、.

1)若,完成下列問題:

①求、的關系式;

②若、都是負整數(shù),求的解析式;

2)若,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)一個盒子里裝有三張卡片,分別標記有數(shù)字,,這三張卡片除標記的數(shù)字外完全相同。隨機有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,.

)求抽取的卡片上的數(shù)字滿足的概率;

)求抽取的卡片上的數(shù)字,,不完全相同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的六面體中,四邊形ABCD是邊長為2的正方形,四邊形ABEF是梯形,,平面平面ABEF,BE2AF=2EF.

1)在圖中作出平面ABCD與平面DEF的交線,并寫出作圖步驟,但不要求證明;

2)求證:平面DEF;

3)求平面ABEF與平面ECD所成銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案