【題目】某生產基地有五臺機器,現有五項工作待完成,每臺機器完成每項工作后獲得的效益值如表所示.若每臺機器只完成一項工作,且完成五項工作后獲得的效益值總和最大,則下列敘述錯誤的的是_____________.
①甲只能承擔第四項工作
②乙不能承擔第二項工作
③丙可以不承擔第三項工作
④丁可以承擔第三項工作
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)判斷函數的零點的個數并說明理由;
(2)求函數零點所在的一個區(qū)間,使這個區(qū)間的長度不超過;
(3)若,對于任意的,不等式恒成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為弘揚中華傳統(tǒng)文化,學校課外閱讀興趣小組進行每日一小時的“經典名著”和“古詩詞”的閱讀活動. 根據調查,小明同學閱讀兩類讀物的閱讀量統(tǒng)計如下:
小明閱讀“經典名著”的閱讀量(單位:字)與時間t(單位:分鐘)滿足二次函數關系,部分數據如下表所示;
t | 0 | 10 | 20 | 30 |
0 | 2700 | 5200 | 7500 |
閱讀“古詩詞”的閱讀量(單位:字)與時間t(單位:分鐘)滿足如圖1所示的關系.
(1)請分別寫出函數和的解析式;
(2)在每天的一小時課外閱讀活動中,小明如何分配“經典名著”和“古詩詞”的閱讀時間,使每天的閱讀量最大,最大值是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓:關于直線:對稱的圓為.
(Ⅰ)求圓的方程;
(Ⅱ)過點作直線與圓交于,兩點,是坐標原點,是否存在這樣的直線,使得在平行四邊形(和為對角線)中?若存在,求出所有滿足條件的直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,下列結論中正確的是( )
A.,
B.函數的圖象一定關于原點成中心對稱
C.若是的極小值點,則在區(qū)間單調遞減
D.若是的極值點,則
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com