【題目】為弘揚中華傳統(tǒng)文化,學(xué)校課外閱讀興趣小組進行每日一小時的“經(jīng)典名著”和“古詩詞”的閱讀活動. 根據(jù)調(diào)查,小明同學(xué)閱讀兩類讀物的閱讀量統(tǒng)計如下:
小明閱讀“經(jīng)典名著”的閱讀量(單位:字)與時間t(單位:分鐘)滿足二次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表所示;
t | 0 | 10 | 20 | 30 |
0 | 2700 | 5200 | 7500 |
閱讀“古詩詞”的閱讀量(單位:字)與時間t(單位:分鐘)滿足如圖1所示的關(guān)系.
(1)請分別寫出函數(shù)和的解析式;
(2)在每天的一小時課外閱讀活動中,小明如何分配“經(jīng)典名著”和“古詩詞”的閱讀時間,使每天的閱讀量最大,最大值是多少?
【答案】(1)見解析;(2)見解析
【解析】
(1)設(shè)f(t)=代入(10,2700)與(30,7500),解得a與b. 令=kt,,代入(40,8000),解得k,再令=mt+b,,代入(40,8000),(60,11000),解得m,b的值.即可得到和的解析式;
(2)由題意知每天的閱讀量為=,分和兩種情況,分別求得最大值,比較可得結(jié)論.
(1)因為f(0)=0,所以可設(shè)f(t)=代入(10,2700)與(30,7500),解得a=-1,b=280.所以 ,又令=kt,,代入(40,8000),解得k=200,令=mt+b,,代入(40,8000),(60,11000),解得m=150,b=2000,所以 .
(2)設(shè)小明對“經(jīng)典名著”的閱讀時間為,則對“古詩詞”的閱讀時間為,
① 當(dāng),即時,
=
=,
所以當(dāng)時,有最大值13600.
當(dāng),即時,
h
=,
因為的對稱軸方程為,
所以 當(dāng)時,是增函數(shù),
所以 當(dāng)時,有最大值為13200.
因為 13600>13200,
所以閱讀總字?jǐn)?shù)的最大值為13600,此時對“經(jīng)典名著”的閱讀時間為40分鐘,對“古詩詞”的閱讀時間為20分鐘.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的兩條對角線相交于點M(2,0),AB邊所在直線的方程為x-3y-6=0,點T(-1,1)在AD邊所在直線上.求:
(1) AD邊所在直線的方程;
(2) DC邊所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分別為線段AD,PC的中點.
(1)求證:AP∥平面BEF;
(2)求證:BE⊥平面PAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)若的圖像過點,且在點P處的切線方程為,試求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,若函數(shù)恒成立,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四面體ABCD中,與都是邊長為8的正三角形,點O是線段BC的中點.
(1)證明:.
(2)若為銳角,且四面體ABCD的體積為求側(cè)面ACD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視節(jié)目為選拔出現(xiàn)場錄制嘉賓,在眾多候選人中隨機抽取100名選手,按選手身高分組,得到的頻率分布表如圖所示.
(1)請補充頻率分布表中空白位置相應(yīng)數(shù)據(jù),再在答題紙上完成下列頻率分布直方圖;
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | 0.050 | |
第2組 | 0.350 | ||
第3組 | 30 | ||
第4組 | 20 | 0.200 | |
第5組 | 10 | 0.100 | |
合計 | 100 | 1.00 |
(2)為選拔出舞臺嘉賓,決定在第3、4、5組中用分層抽樣抽取6人上臺,求第3、4、5組每組各抽取多少人?
(3)求選手的身高平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生產(chǎn)基地有五臺機器,現(xiàn)有五項工作待完成,每臺機器完成每項工作后獲得的效益值如表所示.若每臺機器只完成一項工作,且完成五項工作后獲得的效益值總和最大,則下列敘述錯誤的的是_____________.
①甲只能承擔(dān)第四項工作
②乙不能承擔(dān)第二項工作
③丙可以不承擔(dān)第三項工作
④丁可以承擔(dān)第三項工作
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)直接寫出的零點;
(2)在坐標(biāo)系中,畫出的示意圖(注意要畫在答題紙上)
(3)根據(jù)圖象討論關(guān)于的方程的解的個數(shù):
(4)若方程,有四個不同的根、、、直接寫出這四個根的和;
(5)若函數(shù)在區(qū)間上既有最大值又有最小值,直接寫出a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com