分析 (1)利用排列數(shù)公式得到90n(n-1)=n(n-1)(n-2)(n-3),由此能求出n.
(2)利用排列數(shù)公式和組合數(shù)公式得到$\frac{n!}{(n-4)!}•(n-4)!=42(n-2)!$,從而n(n-1)=42,由此能求出n.
解答 解:(1)∵90${A}_{n}^{2}$=${A}_{n}^{4}$,
∴90n(n-1)=n(n-1)(n-2)(n-3),
∴n2-5n-84=0,
∴(n-12)(n+7)=0,
解得n=12或n=-7(舍).
∴n=12.
(2)∵${A}_{n}^{4}$•${A}_{n-4}^{n-4}$=42${A}_{n-2}^{n-2}$,
∴$\frac{n!}{(n-4)!}•(n-4)!=42(n-2)!$,
∴n(n-1)=42,∴n2-n-42=0,
解得n=7或n=-6(舍),
∴n=7.
點(diǎn)評(píng) 本題考查方程的解法,考查排列數(shù)公式、組合數(shù)公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$或-1 | B. | 2 或$\frac{1}{2}$ | C. | 2 或1 | D. | 2 或-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -6 | B. | -2 | C. | 2 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{5}$個(gè)單位 | B. | 向右平移$\frac{π}{5}$個(gè)單位 | ||
C. | 向左平移$\frac{π}{10}$個(gè)單位 | D. | 向右平移$\frac{π}{10}$個(gè)單位 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com