【題目】已知函數(shù).
(Ⅰ)求函數(shù)的極值點(diǎn);
(Ⅱ)若直線過(guò)點(diǎn),并且與曲線相切,求直線的方程;
(Ⅲ)設(shè)函數(shù),其中,求函數(shù)在區(qū)間上的最小值.(其中為自然對(duì)數(shù)的底數(shù))
【答案】(Ⅰ)是函數(shù)的極小值點(diǎn),極大值點(diǎn)不存在. (Ⅱ)
(Ⅲ) 當(dāng)時(shí),的最小值為0;當(dāng)1<a<2時(shí),的最小值為;
當(dāng)時(shí),的最小值為
【解析】
試題(Ⅰ)>0 ………1分
而>0lnx+1>0><0<00<<
所以在上單調(diào)遞減,在上單調(diào)遞增 . …………3分
所以是函數(shù)的極小值點(diǎn),極大值點(diǎn)不存在. …………………4分
(Ⅱ)設(shè)切點(diǎn)坐標(biāo)為,則切線的斜率為
所以切線的方程為…………5分
又切線過(guò)點(diǎn),所以有
解得所以直線的方程為………6分
(Ⅲ),則<0<00<<>0>所以在上單調(diào)遞減,在上單調(diào)遞增. ………………8分
當(dāng)即時(shí),在上單調(diào)遞增,所以在上的最小值為……9分
當(dāng)1<<e,即1<a<2時(shí),在上單調(diào)遞減,在上單調(diào)遞增.
在上的最小值為………11分
當(dāng)即時(shí),在上單調(diào)遞減,
所以在上的最小值為……12分
綜上,當(dāng)時(shí),的最小值為0;當(dāng)1<a<2時(shí),的最小值為;
當(dāng)時(shí),的最小值為………14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有7本不同的書(shū):
(1)全部分給6個(gè)人,每人至少一本,有多少種不同的分法?
(2)全部分給5個(gè)人,每人至少一本,有多少種不同的分法?.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足2an=2+Sn.
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)bn=log2a2n+1,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某城市有一條從正西方AO通過(guò)市中心O后向東北OB的公路,現(xiàn)要修一條地鐵L,在OA,OB上各設(shè)一站A,B,地鐵在AB部分為直線段,現(xiàn)要求市中心O與AB的距離為,設(shè)地鐵在AB部分的總長(zhǎng)度為.
按下列要求建立關(guān)系式:
設(shè),將y表示成的函數(shù);
設(shè),用m,n表示y.
把A,B兩站分別設(shè)在公路上離中心O多遠(yuǎn)處,才能使AB最短?并求出最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為預(yù)防病毒爆發(fā),某生物技術(shù)公司研制出一種新流感疫苗,為測(cè)試該疫苗的有效性(若疫苗有效的概率小于%,則認(rèn)為測(cè)試沒(méi)有通過(guò)),公司選定個(gè)流感樣本分成三組,測(cè)試結(jié)果如下表:
組 | 組 | 組 | |
疫苗有效 | |||
疫苗無(wú)效 |
已知在全體樣本中隨機(jī)抽取個(gè),抽到組疫苗有效的概率是.
(Ⅰ)求的值;
(Ⅱ)現(xiàn)用分層抽樣的方法在全體樣本中抽取個(gè)測(cè)試結(jié)果,問(wèn)應(yīng)在組抽取多少個(gè)?
(Ⅲ)已知,,求不能通過(guò)測(cè)試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ) 求曲線在點(diǎn)處的切線方程;
(Ⅱ) 討論函數(shù)的單調(diào)性;
(Ⅲ) 設(shè),當(dāng)時(shí),若對(duì)任意的,存在,使得≥,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(t,t1),t∈R,點(diǎn)E是圓上的動(dòng)點(diǎn),點(diǎn)F是圓上的動(dòng)點(diǎn),則|PF||PE|的最大值為______
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Sn為等差數(shù)列{an}的前n項(xiàng)和,a4=2,S6=18.
(1)求an;
(2)設(shè)Tn=|a1|+|a2|+…+|an|,求Tn.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com