【題目】已知數(shù)列{an}的前n項和Sn滿足2an=2+Sn

1)求證:數(shù)列{an}是等比數(shù)列;

2)設(shè)bn=log2a2n+1,求數(shù)列{bn}的前n項和Tn

【答案】(1)見解析;(2)

【解析】

(1)運用數(shù)列的遞推式和等比數(shù)列的定義,即可得證;

(2)運用等比數(shù)列的通項公式和等差數(shù)列的求和公式,計算即可得到所求和.

(1)證明:數(shù)列{an}的前n項和Sn滿足2an=2+Sn,

可得2a1=2+S1=2+a1,解得a1=2;

n≥2時,2an-1=2+Sn-1,又2an=2+Sn,

相減可得2an-2an-1=2+Sn-2-Sn-1=an

an=2an-1,可得數(shù)列{an}是首項、公比均為2的等比數(shù)列;

(2)由(1)可得an=2n,

bn=log2a2n+1=log222n+1=2n+1,

數(shù)列{bn}的前n項和Tn=(3+2n+1)n=n2+2n

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,點為直線上任一點,過點作拋物線的兩條切線,切點分別為,

1)證明,三點的縱坐標(biāo)成等差數(shù)列;

2)已知當(dāng)點坐標(biāo)為時,,求此時拋物線的方程;

3)是否存在點,使得點關(guān)于直線的對稱點在拋物線上,其中點滿足,若存在,求點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某運動員每次投籃命中的概率都是40%.現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有一次命中的概率:先由計算器產(chǎn)生09之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6 ,7 ,8 ,9 ,0表示不命中;再以每三個隨機數(shù)作為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):907, 966, 191, 925, 271, 932, 812,458, 569, 683, 431, 257, 393, 027, 556, 488, 730, 113, 537, 989.據(jù)此估計,該運動員三次投籃恰有一次命中的概率為 ( )

A. 025 B. 02 C. 035 D. 04

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓C的兩個焦點是,且橢圓C與圓有公共點.

1)求實數(shù)a的取值范圍;

2)若橢圓C上的點到焦點的最短距離為,求橢圓C的方程;

3)對(2)中的橢圓C,直線lC交于不同的兩點MN,若線段MN的垂直平分線恒過點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC-A1B1C1中,AB=AA1=AC=2,∠BAC=A1AC=45°,∠BAA1=60°,F為棱AC的中點,E在棱BC上,且BE=2EC

(Ⅰ)求證:A1B∥平面EFC1;

(Ⅱ)求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將兩塊三角板按圖甲方式拼好,其中 ,

,現(xiàn)將三角板沿折起,使在平面上的射影恰好在上,如圖乙.

1)求證: ;

2)求證: 為線段中點;

3)求二面角的大小的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】越接近高考學(xué)生焦慮程度越強,四個高三學(xué)生中大約有一個有焦慮癥,經(jīng)有關(guān)機構(gòu)調(diào)查,得出距離高考周數(shù)與焦慮程度對應(yīng)的正常值變化情況如下表周數(shù)

周數(shù)x

6

5

4

3

2

1.

正常值y

55

63

72

80

90

99

其中,,

1)作出散點圖;

2)根據(jù)上表數(shù)據(jù)用最小二乘法求出y關(guān)于x的線性回方程(精確到0.01

3)根據(jù)經(jīng)驗觀測值為正常值的0.851.06為正常,若1.061.12為輕度焦慮,1.121.20為中度焦慮,1.20及以上為重度焦慮。若為中度焦慮及以上,則要進行心理疏導(dǎo)。若一個學(xué)生在距高考第二周時觀測值為103,則該學(xué)生是否需要進行心理疏導(dǎo)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的極值點;

(Ⅱ)若直線過點,并且與曲線相切,求直線的方程;

(Ⅲ)設(shè)函數(shù),其中,求函數(shù)在區(qū)間上的最小值.(其中為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠今年初用128萬元購進一臺新的設(shè)備,并立即投入使用,計劃第一年維修、保養(yǎng)費用8萬元,從第二年開始,每年的維修、保養(yǎng)修費用比上一年增加4萬元,該設(shè)備使用后,每年的總收入為54萬元,設(shè)使用x年后設(shè)備的盈利總額y萬元.

1)寫出yx之間的函數(shù)關(guān)系式;

2)從第幾年開始,該設(shè)備開始盈利?

3)使用若干年后,對設(shè)備的處理有兩種方案:①年平均盈利額達到最大值時,以42萬元價格賣掉該設(shè)備;②盈利額達到最大值時,以10萬元價格賣掉該設(shè)備.問哪種方案處理較為合理?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案