【題目】下列命題正確的是(

A. 的圖像是一條直線

B. 冪函數(shù)的圖像都經(jīng)過點

C. 若冪函數(shù)是奇函數(shù),則是增函數(shù)

D. 冪函數(shù)的圖像不可能出現(xiàn)在第四象限

【答案】D

【解析】對于函數(shù)的圖象是一條直線除去點,故錯誤對于冪函數(shù)的圖象都經(jīng)過點,當指數(shù)大于時,都經(jīng)過當指數(shù)小于時,不經(jīng)過,錯誤;對于,若冪函數(shù)是奇函數(shù),且,是定義域上的增函數(shù),,上均為減函數(shù),故錯誤;由冪函數(shù)的性質(zhì),冪函數(shù)的圖象一定過第一象限,不可能出現(xiàn)在第四象限,正確故選D.

方法點睛】本題主要通過對多個命題真假的判斷,主要綜合考查冪函數(shù)的單調(diào)性、冪函數(shù)的奇偶性、冪函數(shù)的圖象與性質(zhì),屬于難題.這種題型綜合性較強,也是高考的命題熱點,同學(xué)們往往因為某一處知識點掌握不好而導(dǎo)致“全盤皆輸”,因此做這類題目更要細心、多讀題,盡量挖掘出題目中的隱含條件,另外,要注意從簡單的自己已經(jīng)掌握的知識點入手,然后集中精力突破較難的命題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:
1)已知兩平面的法向量分別為 =(0,1,0), =(0,1,1),則兩平面所成的二面角為45°或135°;
2)若曲線 + =1表示雙曲線,則實數(shù)k的取值范圍是(﹣∞,﹣4)∪(1,+∞);
3)已知雙曲線方程為x2 =1,則過點P(1,1)可以作一條直線l與雙曲線交于A,B兩點,使點P是線段AB的中點.
其中正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為坐標原點,F(xiàn)是橢圓C: =1(a>b>0)的左焦點,A,B分別為C的左,右頂點.P為C上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經(jīng)過OE的中點,則C的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間20名工人年齡數(shù)據(jù)如下表:

年齡(歲)

工人數(shù)(人)

19

1

28

3

29

3

30

5

31

4

32

3

40

1

合計

20


(1)求這20名工人年齡的眾數(shù)與極差;
(2)以十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖;
(3)求這20名工人年齡的方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是奇函數(shù)。

(1)求實數(shù)m的值;

(2)判斷函數(shù)f(x)(1,+∞)上的單調(diào)性,并給出證明;

(3)x(n,a-2),函數(shù)f(x)的值域是(1,+∞),求實數(shù)an的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(a,cos2x), =(1+sin2x ),x∈R,記f(x)= .若y=f(x)的圖象經(jīng)過點( ,2 ).
(1)求實數(shù)a的值;
(2)設(shè)x∈[﹣ , ],求f(x)的最大值和最小值;
(3)將y=f(x)的圖象向右平移 ,再將得到的圖象上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到y(tǒng)=g(x)的圖象,求y=g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】穩(wěn)定房價是我國今年實施宏觀調(diào)控的重點,國家最近出臺的一系列政策已對各地的房地產(chǎn)市場產(chǎn)生了影響.北京市某房地產(chǎn)介紹所對本市一樓群在今年的房價作了統(tǒng)計與預(yù)測:發(fā)現(xiàn)每個季度的平均單價y(每平方米面積的價格,單位為元)與第x季度之間近似滿足:y=500sin(ωx+)+9500 (>0),已知第一、二季度平均單價如下表所示:

x

1

2

3

y

10000

9500

?

則此樓群在第三季度的平均單價大約是
A.10000元
B.9500元
C.9000元
D.8500元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動點A(x , y)在圓x2+y2=1上繞坐標原點沿逆時針方向勻速旋轉(zhuǎn),12秒旋轉(zhuǎn)一周.已知時間t=0時,點A的坐標是( ),則當0≤t≤12時,動點A的縱坐標y關(guān)于 t(單位:秒)的函數(shù)的單調(diào)遞增區(qū)間是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐P﹣ABCD中,底面ABCD為直角梯形,∠BAD=90°,AD∥BC,AB=BC=2,AD=4,PA⊥底面ABCD,PD與底面ABCD成30°角,E是PD的中點.
(1)點H在AC上且EH⊥AC,求 的坐標;
(2)求AE與平面PCD所成角的余弦值.

查看答案和解析>>

同步練習冊答案