如圖,四棱錐F-ABCD的底面ABCD是菱形,其對角線AE、CF都與平面ABCD垂直,AE=1,CF=2.
(1)求二面角B-AF-D的大。
(2)求四棱錐E-ABCD與四棱錐F-ABCD公共部分的體積.
(1)(2).
【解析】
試題分析:(1)方法一:連接交于菱形的中心,過作,為垂足,連接,根據(jù)定義可知為二面角的平面角,在三角形中求出此角即可;
方法二:設(shè)與交點為,以為坐標(biāo)原點,分別以所在直線為軸軸建立如圖所示的空間直角坐標(biāo)系, 設(shè)平面,平面的法向量分別為,利用的公式進行計算.
(2)連接,設(shè)直線與直線相交于點,則四棱錐與四棱錐的公共部分為四棱錐,過作平面,為垂足,然后求出,利用體積公式求解即可.
試題解析:(1)方法一:如圖(1)連結(jié)AC、BD交于菱形的中心O,過O
作OG⊥AF,G為垂足. 連結(jié)BG、DG.
由BD⊥AC,BD⊥CF,得BD⊥平面ACF, 故BD⊥AF. 于是AF⊥平面BGD,
所以BG⊥AF,DG⊥AF,∠BGD為二面角B-AF-D的平面角. 3分
由FC⊥AC,F(xiàn)C=AC=2,得∠FAC,.
由OB⊥OG,OB=OD=,得∠BGD=2∠BGO.
即二面角B-AF-D的大小為. 6分
方法二:設(shè)AC與BD交點為O,以O(shè)為坐標(biāo)原點,分別以BD 、AC所在直線為x軸
y軸建立如圖所示的空間直角坐標(biāo)系
則A(0,-1,0),B(,0,0),D(,0,0),F(xiàn)(0,1,2)
,, 2分
設(shè)平面ABF,平面ADF的法向量分別為
設(shè)
由
令 4分
同理可得 ∴ ∴
∴二面角B-AF-D的大小為 6分
(2)如圖(2)連EB、EC、ED,設(shè)直線AF與直線CE相交于點H,
則四棱錐E-ABCD與四棱錐F-ABCD的公共部分為四棱錐H-ABCD.
過H作HP⊥平面ABCD,所以平面ACFE⊥平面ABCD,
從而. 7分
由,得. 9分
又因為
故四棱錐的體積. 12分
考點:1.二面角的計算;2.幾何體的體積.
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省黃岡市高三下學(xué)期三月月考文科數(shù)學(xué)試卷(解析版) 題型:填空題
在三棱錐中,,平面ABC, . 若其主視圖,俯視圖如圖所示,則其左視圖的面積為 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省武漢市高三下學(xué)期4月調(diào)研測試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
執(zhí)行如圖所示的程序框圖,則輸出的的值是( )
A.-1 B. C. D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省宜昌示范教學(xué)協(xié)作體高一下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)點是面積為4的內(nèi)部一點,且有,則的面積為( )
A.2 B.1 C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省宜昌示范教學(xué)協(xié)作體高一下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題
在中,若,則與的大小關(guān)系為( )
A. B. C. D.、的大小關(guān)系不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省天門市畢業(yè)生四月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
如圖,AB,CD是半徑為a的圓O的兩條弦,它們相交于AB的中點P,,,則CP= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省天門市畢業(yè)生四月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù),在時取得極值,則函數(shù)是( )
A.偶函數(shù)且圖象關(guān)于點(,0)對稱
B.偶函數(shù)且圖象關(guān)于點(,0)對稱
C.奇函數(shù)且圖象關(guān)于點(,0)對稱
D.奇函數(shù)且圖象關(guān)于點(,0)對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省天門市畢業(yè)生四月調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知某幾何體的三視圖(單位cm)如圖所示,則該幾何體的體積為 cm3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省七市(州)高三年級聯(lián)合考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
一環(huán)保部門對某處的環(huán)境狀況進行了實地測量,據(jù)測定,該處的污染指數(shù)等于附近污染源的污染強度與該處到污染源的距離之比.已知相距30km的A,B兩家化工廠(污染源)的污染強度分別為1和4,它們連線上任意一點處的污染指數(shù)等于兩化工廠對該處的污染指數(shù)之和.現(xiàn)擬在它們之間的連線上建一個公園,為使兩化工廠對其污染指數(shù)最小,則該公園應(yīng)建在距A化工廠 公里處.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com