已知函數(shù)). 用表示集合 中元素的個數(shù),若使得成立的充分必要條件是,且,則實數(shù)的取值范圍是

(A)                  (B)

(C)                    (D)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出以下五個命題:
①若lga+lgb=0(a大于0,b不等于1),則函數(shù)f(x)=ax與g(x)=bx的圖象關于x軸對稱.
②已知函數(shù)f(x)=(
12
)x
的反函數(shù)是y=g(x),則g(x)在(0,+∞)上單調(diào)遞增.
③為調(diào)查參加運動會的1000名運動員的年齡分布情況,從中抽查了100名運動員的檔案進行調(diào)查,個體是被抽取的每個運動員;
④用獨立性檢驗(2×2列聯(lián)表)來考察兩個變量是否具有相關關系時,計算出的隨機變量K2的觀測值越大,則說明“X與Y有關系的可能性越大”.
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
4x
x2+a

在探究a=1時,函數(shù)f(x)在區(qū)間[0,+∞)上的最大值問題.為此,我們列表如下
y 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
請觀察表中y值隨x值變化的特點,解答以下兩個問題.
(1)寫出函數(shù)f(x)在[0,+∞)(a=1)上的單調(diào)區(qū)間;指出在各個區(qū)間上的單調(diào)性,并對其中一個區(qū)間的單調(diào)性用定義加以證明.
(2)寫出函數(shù)f(x)(a=1)的定義域,并求f(x)值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
4x
x2+a
.請完成以下任務:
(Ⅰ)探究a=1時,函數(shù)f(x)在區(qū)間[0,+∞)上的最大值.為此,我們列表如下
x 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
請觀察表中y值隨x值變化的特點,解答以下兩個問題.
(1)寫出函數(shù)f(x),在[0,+∞)上的單調(diào)區(qū)間;指出在各個區(qū)間上的單調(diào)性,并對其中一個區(qū)間的單調(diào)性用定義加以證明.
(2)請回答:當x取何值時f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下兩個步驟研究a=1時,函數(shù)f(x)=
4x
x2+a
,(x∈R)
的值域.
(1)判斷函數(shù)f(x)的奇偶性;
(2)結(jié)合已知和以上研究,畫出函數(shù)f(x)的大致圖象,指出函數(shù)的值域.
(Ⅲ)己知a=-1,f(x)的定義域為(-1,1),解不等式f(4-3x)+f(x-
3
2
)>0

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年湖南省長沙一中高三(下)第九次月考數(shù)學試卷(理科)(解析版) 題型:填空題

給出以下五個命題:
①若lga+lgb=0(a大于0,b不等于1),則函數(shù)f(x)=ax與g(x)=bx的圖象關于x軸對稱.
②已知函數(shù)的反函數(shù)是y=g(x),則g(x)在(0,+∞)上單調(diào)遞增.
③為調(diào)查參加運動會的1000名運動員的年齡分布情況,從中抽查了100名運動員的檔案進行調(diào)查,個體是被抽取的每個運動員;
④用獨立性檢驗(2×2列聯(lián)表)來考察兩個變量是否具有相關關系時,計算出的隨機變量K2的觀測值越大,則說明“X與Y有關系的可能性越大”.
其中正確命題的序號是   

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆江蘇省高一上學期期中考試數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)

(1)已知函數(shù)

(2)已知函數(shù)分別由下表給出:

1

2

 

3

6

1

2

2

1

  

用分段函數(shù)表示,并畫出函數(shù)的圖象。

 

查看答案和解析>>

同步練習冊答案