【題目】將正方形沿對角線折成直二面角,有如下四個結(jié)論:

;

是等邊三角形;

與平面所成的角為;

所成的角為.

其中錯誤的結(jié)論是____________.

【答案】

【解析】

作出此直二面角的圖象,由圖形中所給的線面位置關(guān)系對四個命題逐一判斷,即可得出正確結(jié)論.

作出如圖的圖象,其中ABDC=90°,EBD的中點,可以證明出∠AED=90°即為此直二面角的平面角

對于命題,由于BD⊥面AEC,故ACBD,此命題正確;

對于命題,在等腰直角三角形AEC中可以解出AC等于正方形的邊長,故△ACD是等邊三角形,此命題正確;

對于命題AB與平面BCD所成的線面角的平面角是∠ABE=45°,故AB與平面BCD成60°的角不正確;

對于命題可取AD中點FAC的中點H,連接EF,EH,FH,由于EFFH是中位線,可證得其長度為正方形邊長的一半,而EH是直角三角形的中線,其長度是AC的一半即正方形邊長的一半,故△EFH是等邊三角形,由此即可證得ABCD所成的角為60°;

綜上知①②④是正確的

故答案為:③

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元2222年,有一種高危傳染病在全球范圍內(nèi)蔓延,被感染者的潛伏期可以長達10年,期間會有約0.05%的概率傳染給他人,一旦發(fā)病三天內(nèi)即死亡,某城市總?cè)丝诩s200萬人,專家分析其中約有1000名傳染者,為了防止疾病繼續(xù)擴散,疾病預(yù)防控制中心現(xiàn)決定對全市人口進行血液檢測以篩選出被感染者,由于檢測試劑十分昂貴且數(shù)量有限,需要將血樣混合后一起檢測以節(jié)約試劑,已知感染者的檢測結(jié)果為陽性,末被感染者為陰性,另外檢測結(jié)果為陽性的血樣與檢測結(jié)果為陰性的血樣混合后檢測結(jié)果為陽性,同一檢測結(jié)果的血樣混合后結(jié)果不發(fā)生改變.

1)若對全市人口進行平均分組,同一分組的血樣將被混合到一起檢測,若發(fā)現(xiàn)結(jié)果為陽性, 則再在該分組內(nèi)逐個檢測排査,設(shè)每個組個人,那么最壞情況下,需要進行多少次檢測可以找到所有的被感染者?在當(dāng)前方案下,若要使檢測的次數(shù)盡可能少,每個分組的最優(yōu)人數(shù)?

2)在(1)的檢測方案中,對于檢測結(jié)果為陽性的組來取逐一檢測排査的方法并不是很好, 或可將這些組的血樣再進行一次分組混合血樣檢測,然后再進行逐一排査,仍然考慮最壞的情況,請問兩次要如何分組,使檢測總次數(shù)盡可能少?

3)在(2)的檢測方案中,進行了兩次分組混合血樣檢測,仍然考慮最壞情況,若再進行若干次分組混合血樣檢測,是否會使檢測次數(shù)更少?請給出最優(yōu)的檢測方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線在點處的切線方程為.

1)求的解析式;

(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為的正方形, 為等邊三角形, 分別是, 的中點, .

(Ⅰ)求證:平面平面;

(Ⅱ)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知有限集合,定義如下操作過程:從中任取兩個元素,由中除了、以外的元素構(gòu)成的集合記為;①若,則令;②若,則;這樣得到新集合,例如集合經(jīng)過一次操作后得到的集合可能是也可能得到等,可繼續(xù)對取定的實施操作過程,得到的新集合記作,……,如此經(jīng)過次操作后得到的新集合記作,設(shè),對于,反復(fù)進行上述操作過程,當(dāng)所得集合只有一個元素時,則所有可能的集合______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“石頭、剪刀、布”,又稱“猜丁殼”,是一種流行多年的猜拳游戲,起源于中國,然后傳到日本、朝鮮等地,隨著亞歐貿(mào)易的不斷發(fā)展,它傳到了歐洲,到了近代逐漸風(fēng)靡世界.其游戲規(guī)則是:出拳之前雙方齊喊口令,然后在語音剛落時同時出拳,握緊的拳頭代表“石頭”,食指和中指伸出代表“剪刀”,五指伸開代表“布”.“石頭”勝“剪刀”、“剪刀”勝“布”、而“布”又勝過“石頭”.若所出的拳相同,則為和局.小軍和大明兩位同學(xué)進行“五局三勝制”的“石頭、剪刀、布”游戲比賽,則小軍和大明比賽至第四局小軍勝出的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三棱柱中, 分別為的中點,設(shè).

(1)求證:平面平面;

(2)若二面角的平面角為,求實數(shù)的值,并判斷此時二面角是否為直二面角,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題共3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9.

已知數(shù)列滿足.

1)若,求的取值范圍;

2)若是公比為等比數(shù)列,,的取值范圍;

3)若成等差數(shù)列,且,求正整數(shù)的最大值,以及取最大值時相應(yīng)數(shù)列的公差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),令.

(1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;

(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值;

(3)若,正實數(shù)滿足,證明: .

查看答案和解析>>

同步練習(xí)冊答案