【題目】若數(shù)列的前項(xiàng)和為,則下列命題:(1)若數(shù)列是遞增數(shù)列,則數(shù)列也是遞增數(shù)列;(2)數(shù)列是遞增數(shù)列的充要條件是數(shù)列的各項(xiàng)均為正數(shù);(3)若是等差數(shù)列(公差),則的充要條件是;(4)若是等比數(shù)列,則的充要條件是.其中,正確命題的個(gè)數(shù)是(  )

A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)

【答案】B

【解析】

利用等差數(shù)列、等比數(shù)列的定義和性質(zhì),數(shù)列的前n項(xiàng)和的意義,通過舉反例可得(1)、(2)、(3)不正確.經(jīng)過檢驗(yàn),只有(4)正確,從而得出結(jié)論.

解:數(shù)列{an}的前n項(xiàng)和為Sn,故 Sna1+a2+a3++an,

若數(shù)列{an}是遞增數(shù)列,則數(shù)列{Sn}不一定是遞增數(shù)列,如當(dāng)an0 時(shí),數(shù)列{Sn}是遞減數(shù)列,故(1)不正確.

由數(shù)列{Sn}是遞增數(shù)列,不能推出數(shù)列{an}的各項(xiàng)均為正數(shù),如數(shù)列:0,1,23,…,

滿足{Sn}是遞增數(shù)列,但不滿足數(shù)列{an}的各項(xiàng)均為正數(shù),故(2)不正確.

{an}是等差數(shù)列(公差d0),則由S1S2Sk0不能推出a1a2ak0,例如數(shù)列:﹣3,﹣11,3

滿足S40,但 a1a2a3a40,故(3)不正確.

{an}是等比數(shù)列,則由S1S2Sk0k2,kN)可得數(shù)列的{an}公比為﹣1,故有an+an+10

an+an+10可得數(shù)列的{an}公比為﹣1,可得S1S2Sk0k2,kN),故(4)正確.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,則異面直線AB1與BC1所成角的余弦值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,,,

AC的中點(diǎn)O為球心,AC為直徑的球面交PD于點(diǎn)M,交PC于點(diǎn)N.

(1)求證:平面ABM⊥平面PCD;

(2)求直線CD與平面ACM所成角的大;

(3)求點(diǎn)N到平面ACM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,

(Ⅰ)求證:;

(Ⅱ)求證:;

(Ⅲ)在(Ⅱ)中的不等式中,能否找到一個(gè)代數(shù)式,滿足所求式?若能,請直接寫出該代數(shù)式;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,分別是,的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求證:平面平面;

(Ⅲ)在圖中作出點(diǎn)在底面的正投影,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,四邊形為矩形,的中點(diǎn),的中點(diǎn).

(1)求證:;

(2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量指數(shù)AQI是反映空氣質(zhì)量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對應(yīng)關(guān)系如下表:

AQI指數(shù)值

0~50

51~100

101~150

151~200

201~300

>300

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

下圖是某市10月1日—20日AQI指數(shù)變化趨勢:

下列敘述錯誤的是

A. 這20天中AQI指數(shù)值的中位數(shù)略高于100

B. 這20天中的中度污染及以上的天數(shù)占

C. 該市10月的前半個(gè)月的空氣質(zhì)量越來越好

D. 總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,在直角梯形中,,, 為線段 的中點(diǎn)

(1)求證:平面平面

(2)在線段 上是否存在點(diǎn) ,使得平面 ?若存在,求出點(diǎn) 的位置;若不存在,請說明理由

(3)若中點(diǎn),,,,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】二項(xiàng)式的二項(xiàng)式系數(shù)和為256.

(1)求展開式中二項(xiàng)式系數(shù)最大的項(xiàng);

(2)求展開式中各項(xiàng)的系數(shù)和;

(3)展開式中是否有有理項(xiàng),若有,求系數(shù);若沒有,說明理由.

查看答案和解析>>

同步練習(xí)冊答案