【題目】如圖,在三棱錐中,,分別是,的中點.

(Ⅰ)求證:平面

(Ⅱ)求證:平面平面;

(Ⅲ)在圖中作出點在底面的正投影,并說明理由.

【答案】(Ⅰ)詳見解析;(Ⅱ)詳見解析;(Ⅲ)詳見解析.

【解析】

(Ⅰ)利用三角形中位線定理和線面平行的判定定理可以證明出平面;

(Ⅱ)利用等腰三角形三線合一的性質(zhì),可以證明線線垂直,根據(jù)線面垂直的判定定理,可以證明出線面垂直,最后根據(jù)面面垂直的判定定理,可以證明出平面平面;

(Ⅲ)通過面面垂直的性質(zhì)定理,可以在△中,過即可.

(Ⅰ)證明:因為,分別是,的中點,

所以

因為平面,

所以平面

(Ⅱ)證明:因為,,的中點,

所以,

所以平面

所以平面平面

(Ⅲ)解:在△中,過,則點為點在底面的正投影.

理由如下:

由(Ⅱ)知平面平面,且平面平面,

平面,,

所以平面,

即點為點在底面的正投影.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+1|. (I)求不等式f(x)<|2x+1|﹣1的解集M;
(Ⅱ)設(shè)a,b∈M,證明:f(ab)>f(a)﹣f(﹣b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是 的中點.(12分)
(Ⅰ)設(shè)P是 上的一點,且AP⊥BE,求∠CBP的大小;
(Ⅱ)當(dāng)AB=3,AD=2時,求二面角E﹣AG﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在邊長為1的正方體中,E,F(xiàn),G,H分別為A1B1 , C1D1 , AB,CD的中點,點P從G出發(fā),沿折線GBCH勻速運動,點Q從H出發(fā),沿折線HDAG勻速運動,且點P與點Q運動的速度相等,記E,F(xiàn),P,Q四點為頂點的三棱錐的體積為V,點P運動的路程為x,在0≤x≤2時,V與x的圖象應(yīng)為( 。

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐E﹣ABCD中,底面ABCD為矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F(xiàn)為CE的中點,
(1)求證:AE∥平面BDF;
(2)求證:平面BDF⊥平面ACE;
(3)2AE=EB,在線段AE上找一點P,使得二面角P﹣DB﹣F的余弦值為 , 求AP的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列的前項和為,則下列命題:(1)若數(shù)列是遞增數(shù)列,則數(shù)列也是遞增數(shù)列;(2)數(shù)列是遞增數(shù)列的充要條件是數(shù)列的各項均為正數(shù);(3)若是等差數(shù)列(公差),則的充要條件是;(4)若是等比數(shù)列,則的充要條件是.其中,正確命題的個數(shù)是( 。

A. 0個B. 1個C. 2個D. 3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】3名男生、3名女生站成一排:

(1)女生都不站在兩端,有多少不同的站法?

(2)三名男生要相鄰,有多少種不同的站法?

(3)三名女生互不相鄰,三名男生也互不相鄰,有多少種不同的站法?

(4)女生甲,女生乙都不與男生丙相鄰,有多少種不同的站法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究機構(gòu)對高三學(xué)生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù):

(1)請根據(jù)表中提供的數(shù)據(jù),用相關(guān)系數(shù)說明的線性相關(guān)程度;(結(jié)果保留小數(shù)點后兩位,參考數(shù)據(jù):

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(3)試根據(jù)求出的線性回歸方程,預(yù)測記憶力為9的同學(xué)的判斷力.

參考公式:,;相關(guān)系數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:

按此規(guī)律,第個等式可為__________

查看答案和解析>>

同步練習(xí)冊答案