設(shè)函數(shù)f(x)=2x3-3(a+1)x2+6ax+8(a∈R)在x=3處取得極值
(1)求常數(shù)a的值;
(2)求f(x)在R上的單調(diào)區(qū)間;
(3)求f(x)在[-4,4]上的最值.

解:(1)∵函數(shù)f(x)=2x3-3(a+1)x2+6ax+8(a∈R),
∴f'(x)=6x2-6(a+1)x+6a,
因f(x)在x=3取得極值,
所以f'(3)=0.解得a=3.(3分)
經(jīng)檢驗(yàn)知當(dāng)a=3時(shí),x=3為f(x)為極值點(diǎn).
故a=3.(2分)
(2)由(1)知f'(x)=6x2-24x+18=6(x-3)(x-1)=0,
得x1=3,x2=1.
故f(x)在(-∞,1)和(3,+∞)上單調(diào)增,
(1,3)上單調(diào)減.(5分)
(3)由(2)知f(x)在(-4,1)和(3,4)上單調(diào)增,(1,3)上單調(diào)減
又f(-4)=-384,
f(1)=f(4)=16,
f(3)=8,
∴f(x)在[-4,4]上的最大值為16,最小值為-384.(5分)
分析:(1)f'(x)=6x2-6(a+1)x+6a因f(x)在x=3取得極值,由此能求出a.
(2)由(1)知f'(x)=6x2-24x+18=6(x-3)(x-1)=0得x1=3,x2=1.由此能求出f(x)在R上的單調(diào)區(qū)間.
(3)由(2)知f(x)在(-4,1)和(3,4)上單調(diào)增,(1,3)上單調(diào)減,由此能求出f(x)在[-4,4]上的最值.
點(diǎn)評(píng):本題考查求常數(shù)a的值,求f(x)在R上的單調(diào)區(qū)間,求f(x)在[-4,4]上的最值.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意挖掘題設(shè)中的隱條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2、設(shè)函數(shù)f(x)=2x+3,g(x)=3x-5,則f(g(1))=
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定實(shí)數(shù)a(a≠
12
),設(shè)函數(shù)f(x)=2x+(1-2a)ln(x+a)(x>-a,x∈R),f(x)的導(dǎo)數(shù)f′(x)的圖象為C1,C1關(guān)于直線y=x對(duì)稱的圖象記為C2
(Ⅰ)求函數(shù)y=f′(x)的單調(diào)區(qū)間;
(Ⅱ)對(duì)于所有整數(shù)a(a≠-2),C1與C2是否存在縱坐標(biāo)和橫坐標(biāo)都是整數(shù)的公共點(diǎn)?若存在,請(qǐng)求出公共點(diǎn)的坐標(biāo);若不若存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
(2x+1)(3x+a)
x
為奇函數(shù),則a=
-
3
2
-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2x+x-4,則方程f(x)=0一定存在根的區(qū)間為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
-2x+m2x+n
(m、n為常數(shù),且m∈R+,n∈R).
(Ⅰ)當(dāng)m=2,n=2時(shí),證明函數(shù)f(x)不是奇函數(shù);
(Ⅱ)若f(x)是奇函數(shù),求出m、n的值,并判斷此時(shí)函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案