雙曲線方程為x2-3y2=1,則它的右焦點(diǎn)坐標(biāo)為( 。
A、(0,2)
B、(
6
3
,0)
C、(
2
3
3
,0)
D、(
3
3
,0)
考點(diǎn):雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)雙曲線的幾何性質(zhì),求解即可.
解答: 解:∵雙曲線方程為x2-3y2=1,
∴a2=1,b2=
1
3
,
∵c2=b2+a2=
4
3
,
∴它的右焦點(diǎn)坐標(biāo)為(
2
3
3
,0),
故選:C
點(diǎn)評:本題考查了雙曲線的幾何性質(zhì),屬于簡單題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1,(a2-a1),(a3-a2),…,(an-an-1),…,此數(shù)列是首項(xiàng)為1,公比為
1
3
的等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(2n-1)an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
m
+
y2
3
=1(m>0)的一個(gè)焦點(diǎn)是(0,1),則m=
 
;若橢圓上一點(diǎn)P與橢圓的兩個(gè)焦點(diǎn)F1,F(xiàn)2構(gòu)成的三角形PF1F2的面積為
2
,則點(diǎn)P的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x),如果存在函數(shù)g(x)=ax+b(a,b為常數(shù)),使得f(x)≥g(x)對一切實(shí)數(shù)x都成立,則稱g(x)為函數(shù)f(x)的一個(gè)承托函數(shù).給出如下命題:
①函數(shù)g(x)=-2是函數(shù)f(x)=
lnx,x>0
1,x≤0
的一個(gè)承托函數(shù);
②函數(shù)g(x)=x-1是函數(shù)f(x)=x+sinx的一個(gè)承托函數(shù);
③若函數(shù)g(x)=ax是函數(shù)f(x)=ex的一個(gè)承托函數(shù),則a的取值范圍是[0,e];
④值域是R的函數(shù)f(x)不存在承托函數(shù);
其中,所有正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從6本不同的數(shù)學(xué)書和5本不同的英語書中取3本,要求數(shù)學(xué)書和英語書都要有取到,則不同的取法種數(shù)有( 。┓N.
A、
C
3
11
-
C
3
5
B、
C
1
5
C
2
6
C、
C
1
5
C
2
6
+
C
2
5
C
1
6
D、
C
3
11
-
C
2
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)回歸直線方程為
y
=1.5x+45(xi∈{1,5,7,13,19}),則
.
y
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos2x-sin2x 的一條對稱軸為(  )
A、x=
π
4
B、x=
π
8
C、x=-
π
8
D、x=-
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某村計(jì)劃建造一個(gè)室內(nèi)周長為200m的矩形蔬菜溫室.在溫室內(nèi),沿左、右兩側(cè)與后側(cè)內(nèi)墻各保留1m寬的通道,沿前側(cè)內(nèi)墻保留3m寬的空地(如圖).當(dāng)矩形溫室的邊長各為多少時(shí),蔬菜的種植面積最大?最大種植面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

比較22.5,(2.5)0,(
1
2
)2.5
的大小,按從小到大的順序用不等號(hào)連接起來
 

查看答案和解析>>

同步練習(xí)冊答案