已知橢圓C:的離心率為,右焦點(diǎn)到直線(xiàn) 的距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線(xiàn) 與橢圓C交于A(yíng)、B兩點(diǎn),且線(xiàn)段AB中點(diǎn)恰好在直線(xiàn)上,求△OAB的面積S的最大值.(其中O為坐標(biāo)原點(diǎn)).
(I) .(II)
解析試題分析:(I)由題意得,,所以,所求橢圓方程為.
(II)設(shè),把直線(xiàn)代入橢圓方程得到
,因此,,
所以中點(diǎn),又在直線(xiàn)上,得,
, 故,,
所以,原點(diǎn)到的距離為,
得到,當(dāng)且僅當(dāng)取到等號(hào),檢驗(yàn)成立.
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,直線(xiàn)與橢圓的位置關(guān)系,均值定理的應(yīng)用。
點(diǎn)評(píng):中檔題,求橢圓的標(biāo)準(zhǔn)方程,主要運(yùn)用了橢圓的幾何性質(zhì),注意明確焦點(diǎn)軸和a,b,c的關(guān)系。曲線(xiàn)關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題(2)利用弦長(zhǎng)公式,確定得到三角形面積表達(dá)式,應(yīng)用均值定理求得最大值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓的離心率為,兩焦點(diǎn)分別為,點(diǎn)M是橢圓C上一點(diǎn),的周長(zhǎng)為16,設(shè)線(xiàn)段MO(O為坐標(biāo)原點(diǎn))與圓交于點(diǎn)N,且線(xiàn)段MN長(zhǎng)度的最小值為.
(1)求橢圓C以及圓O的方程;
(2)當(dāng)點(diǎn)在橢圓C上運(yùn)動(dòng)時(shí),判斷直線(xiàn)與圓O的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上.若橢圓上的點(diǎn)到焦點(diǎn)、的距離之和等于4.
(1)寫(xiě)出橢圓的方程和焦點(diǎn)坐標(biāo).
(2)過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn)、,當(dāng)的面積取得最大值時(shí),求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
平面內(nèi)與兩定點(diǎn)連線(xiàn)的斜率之積等于非零常數(shù)的點(diǎn)的軌跡,加上 兩點(diǎn),所成的曲線(xiàn)可以是圓,橢圓或雙曲線(xiàn).
(Ⅰ)求曲線(xiàn)的方程,并討論的形狀與值的關(guān)系;
(Ⅱ)當(dāng)時(shí),對(duì)應(yīng)的曲線(xiàn)為;對(duì)給定的,對(duì)應(yīng)的曲線(xiàn)為,若曲線(xiàn)的斜率為的切線(xiàn)與曲線(xiàn)相交于兩點(diǎn),且(為坐標(biāo)原點(diǎn)),求曲線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
曲線(xiàn)都是以原點(diǎn)O為對(duì)稱(chēng)中心、坐標(biāo)軸為對(duì)稱(chēng)軸、離心率相等的橢圓.點(diǎn)M的坐標(biāo)是(0,1),線(xiàn)段MN是曲線(xiàn)的短軸,并且是曲線(xiàn)的長(zhǎng)軸 . 直線(xiàn)與曲線(xiàn)交于A(yíng),D兩點(diǎn)(A在D的左側(cè)),與曲線(xiàn)交于B,C兩點(diǎn)(B在C的左側(cè)).
(1)當(dāng)=,時(shí),求橢圓的方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的上頂點(diǎn)為,左焦點(diǎn)為,直線(xiàn)與圓相切.過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn).
(I)求橢圓的方程;
(II)當(dāng)的面積達(dá)到最大時(shí),求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線(xiàn)相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過(guò)點(diǎn)的直線(xiàn)與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿(mǎn)足(其中為坐標(biāo)原點(diǎn)),求整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓的左、右焦點(diǎn)分別為,
上頂點(diǎn)為,在軸負(fù)半軸上有一點(diǎn),滿(mǎn)足,且.
(Ⅰ)求橢圓的離心率;
(Ⅱ)是過(guò)三點(diǎn)的圓上的點(diǎn),到直線(xiàn)的最大距離等于橢圓長(zhǎng)軸的長(zhǎng),求橢圓的方程;
(Ⅲ)在(Ⅱ)的條件下,過(guò)右焦點(diǎn)作斜率為的直線(xiàn)與橢圓交于兩點(diǎn),線(xiàn)段的中垂線(xiàn)與軸相交于點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為,直線(xiàn)過(guò)點(diǎn),,且與橢圓相切于點(diǎn).(Ⅰ)求橢圓的方程;(Ⅱ)是否存在過(guò)點(diǎn)的直線(xiàn)與橢圓相交于不同的兩點(diǎn)、,使得?若存在,試求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com