橢圓的離心率為,兩焦點分別為,點M是橢圓C上一點,的周長為16,設(shè)線段MO(O為坐標(biāo)原點)與圓交于點N,且線段MN長度的最小值為.
(1)求橢圓C以及圓O的方程;
(2)當(dāng)點在橢圓C上運動時,判斷直線與圓O的位置關(guān)系.

(1),
(2)直線l與圓O相交.

解析試題分析:解:(1)設(shè)橢圓C的半焦距為c,則,即①          1分
   ②            3分
聯(lián)立①②,解得,所以.
所以橢圓C的方程為.                     5分
而橢圓C上點與橢圓中心O的距離為
,等號在時成立   7分,
,則的最小值為,從而,則圓O的方程為.                              9分
(2)因為點在橢圓C上運動,所以.即.
圓心O到直線的距離.     12分
當(dāng),,則直線l與圓O相交.               14分
考點:橢圓方程和圓的方程
點評:主要是考查了橢圓的方程以及直線與圓的位置關(guān)系的運用,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線的左、右焦點分別為離心率為直線與C的兩個交點間的距離為
(I)求;
(II)設(shè)過的直線l與C的左、右兩支分別相交有A、B兩點,且證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

過點C(0,1)的橢圓的離心率為,橢圓與x軸交于兩點,過點C的直線與橢圓交于另一點D,并與x軸交于點P,直線AC與直線BD交于點Q.

(I)當(dāng)直線過橢圓右焦點時,求線段CD的長;
(II)當(dāng)點P異于點B時,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓C:(a>b>0)的左、右焦點,直線:x=-將線段F1F2分成兩段,其長度之比為1 : 3.設(shè)A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,分別為橢圓的左、右焦點,若橢圓的焦距為2.
⑴求橢圓的方程;
⑵設(shè)為橢圓上任意一點,以為圓心,為半徑作圓,當(dāng)圓與橢圓的右準(zhǔn)線有公共點時,求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為
(1)求雙曲線C的方程;
(2)若直線與雙曲線C恒有兩個不同的交點A和B,且(其中O為原點). 求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓的左頂點為是橢圓上異于點的任意一點,點與點關(guān)于點對稱.

(1)若點的坐標(biāo)為,求的值;
(2)若橢圓上存在點,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線的焦點在拋物線上.

(1)求拋物線的方程及其準(zhǔn)線方程;
(2)過拋物線上的動點作拋物線的兩條切線, 切點為.若的斜率乘積為,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:的離心率為,右焦點到直線 的距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線 與橢圓C交于A、B兩點,且線段AB中點恰好在直線上,求△OAB的面積S的最大值.(其中O為坐標(biāo)原點).

查看答案和解析>>

同步練習(xí)冊答案